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Abstract. We consider the scheduling system of a container cloud spot
market where the user specifies the requested number of containers and
their resource requirements, along with a bid value. Jobs are preemp-
tively ordered based on their bid values as the available capacity, which
is excess capacity made available for the spot market, may vary over
time. Due to this variation, the number of allocated containers to a job
may vary during its lifetime, resulting in users experiencing periods of
degraded performance, potentially leading to job slowdown. We want to
model and analyze such a scheduling system starting from first princi-
ples, inspired by the M/M/1 bribe queue. Thus, we introduce a simple,
empirical queueing model which parametrically relates job slowdown to
bid values given load and bid distribution. We demonstrate the accuracy
of our approximation and parameter estimation through simulation.

1 Introduction

Cloud providers make excess resource capacity available at discounted prices
through a so called spot market [5, 17, 10]. The unit of sale is typically a Virtual
Machine (VM) instance, but variations may also include containers or collection
of VM instances in case of a container or batch service, respectively. Users submit
their bids for such resource units which have a time-varying price per unit that
is controlled by the provider. When the price goes above the user bid, the user
loses the corresponding resources. Such a market is attractive to users because
spot instance have relatively low prices. However, a major drawback of the spot
market is that users need to deal with potential unit revocations [1], which are
difficult to anticipate. For both the service provider and users, there is a crucial
need for a prediction tool to provide (1) revenue estimates as a function of price
and (2) quality of service as a function of bid, respectively.

We consider an enhanced management of excess resource capacity through
a scheduling system, where a user specifies a bid value, which acts as a priority
level. As the available capacity shrinks or higher priority jobs are submitted, the
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scheduler reclaims resources from lower priority running jobs, by preempting
them and putting them back in the queue. From a modeling point of view, we
consider a preemptive priority scheduler of jobs using containers. At job sub-
mission time, the user specifies the requested number of containers and their
resource requirements, along with a bid value. The number of allocated contain-
ers may vary during the lifetime of a job, anywhere from zero to the requested
number. The tasks of a job are managed by a task scheduler and run on the
allocated containers. The job continues to execute, with potential degraded per-
formance, as the number of allocated containers varies. The deallocation of a
container causes the currently running task(s) on the container to be aborted.
If the number allocated goes down to zero, the job is put back in the queue.

We seek to obtain a simple and empirical expression for the job slowdown
as a function of bid value. To this end, we propose a parametric approximate
expression inspired by the M/M/1 bribing queue [9]. We are also concerned with
the dynamic estimation of parameters in order to adapt the queueing model and
provide accurate performance predictions in the face of time-varying workloads.
We achieve this by employing an extended Kalman filter [12] on the slowdown
and bid values measured over a period of time. We validate the accuracy of our
approximation through simulation experiments.

The main contributions of this paper are: (1) a simple, empirical, parametric
closed-form approximate expression for the job slowdown as a function of bid
value for scheduling jobs in a container cloud spot market, and (2) a methodol-
ogy, based on filtering techniques, for dynamically estimating the model param-
eters at runtime based on measurements.

2 Problem Description

We consider a container cloud spot market, enhanced with a job scheduler, pro-
viding differentiated performance based on bids. As the market price fluctuates,
a job may wait in the queue and/or be preempted during its life time. Partial
preemption is possible if only a fraction of the containers that a job needs are
de-allocated. This is in contrast with a typical spot market (without queueing
and only for single instances (containers)), where jobs are either rejected or
completely aborted.

We assume a parallel job model such as data analytics applications in a real
environment with multiple resources. A job is decomposed into multiple tasks
that run on units of the available capacity called compute slots. Without loss
of generality, we refer to a compute slot as a container, which is the unit of
allocation. Typically, a worker runs in a container and is responsible for the
execution of the tasks assigned to it by the task scheduler. We use the terms
worker and container interchangeably throughout the paper. In this paper we
are not concerned with the task graph of the job, nor the scheduling of individual
tasks. Rather, we remain at the job level and consider the job, as a whole, and its
allocated workers. We assume that running workers are always busy executing
tasks. Because the number of tasks is typically much larger than the allocated
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Fig. 1: An overview of our queueing system.

containers, jobs are often multi-waved, thereby running only a fraction of their
tasks at a time.

Figure 1 depicts the scheduling of jobs in this environment. Jobs arrive in-
dependently according to some stochastic process. A job comes with a bid value
and the jobs are ordered based on their bid values, so that lower bid values are in
the back of the queue. A job requests some number of containers to run its tasks.
Jobs and containers are drawn as rectangles and circles within the rectangles,
respectively. The system has a certain container capacity, represented as squares.
A circle within a square represents a worker assigned to a container. Jobs wait
in the queue until they are allocated at least one container. At such a time they
move to the in service area. They remain in service until they complete and de-
part from the system. While in service, the number of allocated containers may
grow and shrink, depending on container availability and preemption. Allocated
and unallocated containers are drawn as hollow and solid circles, respectively.
Preempted tasks may need to be re-executed. If all the containers of a job are
deallocated, the job goes back to the waiting queue.

A job could be in one of three states, as far as its container allocation is con-
cerned: waiting, executing, or partially executing. A job is in a waiting state if
all its requested containers are not allocated yet (all solid circles). Alternatively,
a job is in an executing state if all of its requested containers are allocated (all
hollow circles). And, a partially executing job is one with a non-zero (and non-
one) fraction of its requested containers are allocated. Such a job is progressing
with a degraded performance. Thus, jobs in the in service area are either exe-
cuting or partially executing. In general, containers may not be the same size
in terms of their allocated resources (CPU and memory). However, in the case
of homogeneous containers, we may only have at most one job in the partially
executing state.

3 Modeling and Analysis

We seek a functional relationship between job slowdown and bid. In addition to
the bid value, the job slowdown depends on many factors such as the current load
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in the system, the resource requirements of the job, the number of containers
allocated to run the job, and the bid values of other jobs. To assess the relation-
ship between the job slowdown and the bid value, given such factors, we need
to develop an analytic model which can be used to predict either the slowdown
given a bid value, or the bid value which would result in a given slowdown. Both
predictions could be valuable to users to set the expectation for job performance
and to advise setting a bid value, respectively.

3.1 Definitions and Assumptions

Let job arrivals constitute a Poisson process with rate λ and let X be the random
variable representing the job bid value. Without loss of generality, we assume that
the bid value is in the set X = [0, 1]. The probability distribution function of X
is denoted by B(x) = Pr[X ≤ x], x ∈ X which is continuous and differentiable.

A job leaves the system after completing all of its work, which we denote by
W . Jobs request homogeneous workers that have the same amount of resources.
We further assume that it is always possible to divide the remaining work among
the running workers, with no running (allocated) worker staying idle. The service
time R of a job is the duration over which the running workers execute all the
work needed. Thus, if a job is allocated all requested workers the service time
is given by R = W/K, where K denotes the number of workers. This analysis
is for the preemptive-resume case3. Let µ = 1/R be the service rate, where R is
the average job service time. We assume homogeneous slots, i.e. equal amount
of resources per slot, and that one worker fits exactly into one slot. Thus, the
offered load is given by ρ = λK/Nµ < 1, where K is the average number of
workers per job and N is the system capacity.

We denote the average response time of a job with bribe value x by T (x). We
further define the job slowdown as the ratio of the average response time T (x)
and the average service time 1/µ, denoted by S(x) = T (x)/(1/µ).4

3.2 Bribery Queueing Model

The simplest case for our queueing system is when K is fixed at K = 1, W is
exponentially distributed, and N = 1, resulting in the M/M/1 bribing5 queue [9].
For such a model, the slowdown of a job with bribe value x is given by:

S(x) =
1

(1− ρ(1−B(x)))2
. (1)

3 Note that in the case of exponential service time, the preemptive-repeat and
preemptive-resume cases result in similar expressions for the average response time.

4 Note that we define the slowdown as the ratio of two average values, and not the
average of a ratio of two values. The latter alternative definition would have (1)
resulted in a more complex derivation and conditional expression on the service
time and, more importantly, (2) necessitated a priori knowledge of job service time,
which may not be available in practice.

5 We will use the words bribe and bid interchangeably throughout this paper.
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Let S be the random variable representing the slowdown across all jobs. The
bribe value which yields a given slowdown of s ∈ S is obtained by inverting
Equation 1, as

x(s) = B−1

(
1− 1− 1/

√
s

ρ

)
. (2)

Our queueing system, described in Section 2, along with other modern job
models in data centers and clouds, are quite challenging to analyze [6]. Though
simplistic and limiting, the single-server bribing queue has an appealingly concise
expression. We seek an approximate expression for our generalized model by
introducing a parameter vector, Θ, consisting of two model parameters, Θ =
[θ0, θ1], which act as scale and shape parameters, respectively, such that 0 ≤
θ0 < 1 and θ1 > 0. First, θ0 acts as a (virtual) replacement for the server
utilization, ρ, which may not be available to an external observer. Second, θ1
captures the variation in the expression due to the model features described
previously. Hence, we extend Equation 1 and write a closed-form approximate
expression for the job slowdown as a function of B, the bid distribution, and Θ,
the parameter vector, in addition to x, the bid value, as

S(x;B,Θ) =
1

[1− θ0(1−B(x))θ1 ]
2 . (3)

The bid which results in a given job slowdown may be obtained by inverting the
above equation, similar to Equation 2.

3.3 Parameter estimation

This section addresses the issue of dynamically estimating the parameters in
our model of the scheduling system. The model has bid values as input and
corresponding slowdown values as output. There are two sets of parameters:
(1) bidding parameters which characterize the bid distribution, B(x), and (2)
model parameters which characterize the queueing model, i.e. the relationship
between a bid value x and its corresponding slowdown value S(x). In practice,
one is not given such a distribution or parameter values. Thus, we need to have
a dynamic estimator which derives them dynamically, based on observations
of the job bid sequence {x0, x1, · · · , xi} and corresponding attained slowdown
sequence {s0, s1, · · · , si}, i � 0. Based on such sequences, the estimator builds
a model and keeps updating the two sets of parameters dynamically. The model
produced by the estimator may be used to predict a slowdown S̃(x) for a given
bid value x, or a bid value x̃ for a desired slowdown value s.

Our design for such a dynamic estimator is depicted in Figure 2. We separate
the estimation process into two independent processes: one for estimating the
bidding parameters and another for estimating the model parameters. Firstly, we
use the job bid sequence {x0, x1, · · · , xi} to derive a bid distribution. Then, using
the latter, along with the attained slowdown sequence {s0, s1, · · · , si}, we use a
filter to estimate the model parameters dynamically. Both the bid distribution
and parameter values could then be used for prediction.



6 B. Ghit, and A. Tantawi

Moments 
matching 
estimator

Bid 
distribution

(Beta)

Extended 
Kalman filter 

estimator

Performance 
model Bid

/P
er

fo
rm

an
ce

 Pr
ed

ict
or

M
ea

su
re

m
en

ts

Pr
ed

ict
ion

s

bids

a , b
parameters

B( )Q
parameter

slowdown

Queries

Fig. 2: Our framework for dynamic estimation and prediction.

We select a probability distribution for the bid distribution from the first and
second moments of the distribution. In general, given the first few moments of
a probability distribution over a finite range, the maximum-entropy distribution
may be obtained using Lagrange multipliers [3], which may be approximated
by the Beta distribution [13]. We characterize the bid distribution with two
parameters: α and β, associated with the first and second moments of X. Let r̃
and s̃2 be the sample average and sample variance of the observed bid values over
a given time interval. Thus, using the method of moments [4], we can estimate

the parameters α̃ and β̃, as α̃ = r̃
(
r̃(1−r̃)
s̃2 − 1

)
and β̃ = (1 − r̃)

(
r̃(1−r̃)
s̃2 − 1

)
,

respectively.
As changes occur in the system, such as the nature of workload, load intensity,

and cluster configuration, the model parameters change accordingly. Hence, we
need a method by which an estimate of the parameter vector Θ̃ is obtained.
In particular, we employ a system where the state vector corresponds to the
parameter vector, Θ̃, the observation corresponds to the measured slowdown,
and the system environment includes the bid value. The system transfer function
is given by the model functional expression which relates the input to the output,
which is non-linear. We employ an extended Kalman filter technique [20, 19] to
linearize the transfer function by taking first derivatives.

We set the state evolution matrix F to the identity matrix and the (evolution)
covariance matrix Q to a fraction f of the squared values of the initial state
variables. For the (system) covariance matrix R, we use an approximation based
on the 95% confidence interval of the t-distribution divided by a factor γ which
is a fraction of the actual measurement window in relation to one which yields
steady state measurements. We set f = 5% and γ = 0.5.

4 Simulations

To validate the job slowdown approximation given by Equation 3, we simulate
a system with 12 slots over 4,000 secs in steady state. Jobs arrive as a Poisson
process with an average rate of 3.2 jobs/sec. The job service time is Gamma
distributed with average 1 sec and variance 0.5 sec2. The requested number of
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Fig. 3: The average job slowdown versus the bid value with the prediction model
and simulations for different bid distributions.
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Fig. 4: Estimates of bid distribution parameters for different bid distributions.

slots per job is uniformly distributed between 1 and 5 slots. This constitute an
offered load of 80%. As for the bid distribution, we consider three cases: linearly
decreasing6, uniform, and linearly increasing. The density functions b(x) are
2(1−x), 1, and 2x, respectively, x ∈ [0, 1]. And, the distribution functions B(x)
are x(2− x), x, and x2, respectively.

We divide the bid range into 20 bins, each with a width of 0.05, and we
calculate the average job slowdown for each such bin. The data points are used in
a regression analysis of Equation 3, solving for [θ̃0, θ̃1] that minimizes the mean
squared error (mse) between the model and simulation values of the average
slowdown. Figure 3 depicts the average slowdown as a function of bid using the
model and simulation for three bid distributions. We observe that our model
anticipates with high accuracy the simulation results for the entire range of bid
values, irrespective of the shape of the bid distribution. The estimates for the
three bid distributions were θ̃0 = 0.64 and θ̃1 = 2.44, with mse = 3.47 ∗ 10−03,
θ̃0 = 0.62 and θ̃1 = 2.26, with mse = 2.56 ∗ 10−02 and θ̃0 = 0.62 and θ̃1 = 2.27,
with mse = 3.21 ∗ 10−02, respectively.

Figure 4 shows the estimates of the three bid distributions. Because our
estimator uses samples of the bid distribution, parameters α and β fluctuate
around their values, governed by α/β = 0.5, 1, and 2, respectively.

6 In practice, users may favor bidding low.



8 B. Ghit, and A. Tantawi

1

2

3

4

0.0

0.3

0.6

0.9

1 201 401 601 801 1001

q1q0

Job identifier

q0
q1

(a) Linearly decreasing

1

2

3

4

0.0

0.3

0.6

0.9

1 201 401 601 801 1001

q1q0

Job identifier

q0
q1

(b) Uniform

1

2

3

4

0.0

0.3

0.6

0.9

1 201 401 601 801 1001

q1q0

Job identifier

q0
q1

(c) Linearly increasing

Fig. 5: Estimates of model parameters for different bid distributions.

Figure 5 shows the model parameters over time for the three bid distributions.
We observe that θ̃1 has a catalyzing effect and drops to lower values when θ̃0 is
overestimated thus adjusting the prediction model.

5 Related Work

Since Amazon EC2 released its spot markets in 2009, a sizable body of research
analyzed the operation of such systems in the cloud. The characterization and
prediction of spot prices of the AWS spot markets [1] inspired the design of user
bidding strategies that optimize cost while also achieving uninterrupted service.
Such strategies can be derived either by means of statistical analysis of historical
spot prices [8, 18] or through more advanced modeling techniques such as Markov
chains [2, 16].

Modeling and predicting the performance of multi-task MapReduce-based
applications has been studied in various settings [7, 15]. Common approaches
build an estimator by choosing a relationship between an output variable that
needs to be predicted and several system properties that can be measured and
used for prediction. To provide good predictions, the estimator employs machine
learning techniques and needs large amounts of training data based on low-level
application performance characteristics [11, 14].

6 Conclusion

We presented a simple, empirical, parametric approximate expression for the job
slowdown as a function of bid value for job scheduling in container cloud spot
markets. The approximate expression extends the M/M/1 bribing queue using
two parameters. Further, we provided a methodology for the dynamic estima-
tion of the parameters using the method of moments matching and extended
Kalman filtering, a control-theoretic approach. We validated our approximation
and prediction methodology using simulation experiments. We incorporated our
approximate model in a spot advisor that is employed to either (1) set an expec-
tation for the performance of a job given a particular bid value or (2) suggest a
minimum bid value required to attain a given service level.
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