
The BTWorld Use Case for Big Data Analytics:

Description, MapReduce Logical Workflow, and Empirical Evaluation

Tim Hegeman, Bogdan Ghit,, Mihai Capotă, Jan Hidders, Dick Epema, and Alexandru Iosup

Parallel and Distributed Systems Group, Delft University of Technology, the Netherlands

T.M.Hegeman@student.tudelft.nl, {B.I.Ghit, M.Capota, A.J.H.Hidders, D.H.J.Epema, A.Iosup}@tudelft.nl

Abstract—The commoditization of big data analytics, that is,
the deployment, tuning, and future development of big data
processing platforms such as MapReduce, relies on a thorough
understanding of relevant use cases and workloads. In this work
we propose BTWorld, a use case for time-based big data analytics
that is representative for processing data collected periodically
from a global-scale distributed system. BTWorld enables a data-
driven approach to understanding the evolution of BitTorrent, a
global file-sharing network that has over 100 million users and
accounts for a third of today’s upstream traffic. We describe
for this use case the analyst questions and the structure of a
multi-terabyte data set. We design a MapReduce-based logical
workflow, which includes three levels of data dependency—
inter-query, inter-job, and intra-job—and a query diversity that
make the BTWorld use case challenging for today’s big data
processing tools; the workflow can be instantiated in various
ways in the MapReduce stack. Last, we instantiate this complex
workflow using Pig–Hadoop–HDFS and evaluate the use case
empirically. Our MapReduce use case has challenging features:
small (kilobytes) to large (250 MB) data sizes per observed
item, excellent (10−6) and very poor (102) selectivity, and short
(seconds) to long (hours) job duration.

I. INTRODUCTION

Time-based analytics, that is, extracting meaningful infor-

mation out of a very large set of timestamped information,

is challenging for existing data processing systems such as

the popular MapReduce-based Hadoop [1], [2], [3], which

must be operated efficiently to achieve good performance

cheaply [4]. Understanding the workload, through use cases

or real-workload traces, can significantly help tune existing

systems [5], [6] and improve future-system designs [7]. In

this work, we present the BTWorld [8] use case for time-

based big data analytics, which aims at understanding the

recent evolution of BitTorrent, a major Internet application

with significant traffic and over 100 million users. Our use

case extends prior work on MapReduce workloads with a

comprehensive use case that focuses on a new application do-

main, increased diversity of analytics, a workflow of coupled

MapReduce jobs, and an empirical study based on a multi-

year data set. With BTWorld, we are also able to extend over

a decade of theoretical BitTorrent research with knowledge

that can only be acquired from a big-data-driven study. We

further discuss the idea of extending the BTWorld use case

towards a benchmark suite for time-based analytics platforms.

Time-based analytics can lead to knowledge otherwise in-

accessible to analysts, but pose interesting new challenges to

big data processing systems. Large amounts of time-stamped

new records are added periodically to a continuously growing

data set, creating time series of various lengths. Studying the

evolution in time of an observed system that may include tens

of millions of objects, as the use case introduced in Section II

does, may involve algorithms for log processing that have

variable complexity based on both the amount of the data that

needs to be mined and the operations performed on the data.

The analyst may ask for various operations, including through

SQL-like aggregations, selections, joins, or projections. The

analyst may also formulate complex queries that involve large

amounts of or even the entire data set, such as “What is the

evolution of the most relevant objects in the system, over

the entire measurement?”. Minimizing the amount of the data

processed by each query, understanding and exploiting data

reuse, selecting the order of execution for the queries, and

many other approaches must be designed, automated, and

tuned for efficiently managing the query workflow.

Designing, automating, and tuning data processing systems

all rely on a good understanding of the workload, and in

particular of three main types of data dependency. Inter-query

dependencies occur when the output of a query can be reused

as input by another. For example, the most popular K items

sold by a chain of stores can be extracted from the output of a

query that computes the most popular K items for each store.

Inter-job dependencies occur when complex queries with

different operators are translated into workflows of jobs, such

that jobs cannot start before the output of their predecessors is

materialized. A common example of inter-job data dependency

is given by the TeraSort benchmark, which includes three

jobs, for data generation, actual sorting, and output validation.

Intra-job dependencies occur when data-intensive frameworks

exploit the available job parallelism by breaking down each

job into multiple tasks. In many popular programming models,

from the 1990s BSP [9] to the modern MapReduce, a job

may have one or even multiple synchronization points which

split(s) the computation into multiple phases with identical

tasks within each phase, but (possibly) distinct tasks between

different phases. For MapReduce, there are two main phases:

the map phase which performs a group by on each partition of

the data set, followed by the reduce phase which aggregates

the output of the map phase.

We focus in this work on the BTWorld use case, as an

example of big data time-based analytics. In particular, we

focus on a MapReduce-based workflow and implementation,

with a broader discussion towards a benchmark for time-based

analytics platforms. The MapReduce programming model

has caught the attention of many scientific and engineer-

ing laboratories around the world, with over 10 000 distinct

programs implemented only at Google [10], thousands of

updates provided by the leading providers of commercial

MapReduce software stacks to the open-source Hadoop, and

hundreds of thousands of processors managed with the Hadoop

main middleware [11]. Prior work has already focused on

understanding MapReduce workloads [12], [13], [12], pre-

sented several MapReduce use-cases [14], [7], or focused on

MapReduce benchmarking suites [15], [16], [17]. In contrast,

our work focuses on a new application domain, a large input

data set, and a real and complex data processing workflow

with diverse queries. Our main contribution is three-fold:

1) We describe a use case for big data, time-based analytics

(Section II). Our use case, BTWorld [8], represents the

observation of massive, complex, distributed systems

operated by millions of users—the global BitTorrent file-

sharing network. We present the use case from a big

data perspective, focusing on a multi-year, multi-terabyte

data set and on a set of questions that the system analyst

asks the data processing system to answer. This use case

can be very useful for the many domains that increas-

ingly study large complex systems through data-driven

approaches: business intelligence and decision making,

computer science, social sciences, urban planning, etc.

2) We design a MapReduce-based logical workflow that

can answer the set of questions that the system analyst

asks (Section III). Our logical workflow, for which

queries exhibit all three levels of data dependency,

extends the current body of work in MapReduce use

cases and benchmarks. In practice, the workflow can be

implemented using various open-source and commercial

tools from the MapReduce stack, and thus enables their

comparison for a relevant application domain.

3) We implement the logical workflow using the Pig Latin–

Hadoop–HDFS MapReduce stack and conduct an empir-

ical evaluation with subsets of increasing size extracted

from the complete BTWorld data set (Section IV). We

analyze system-level, query-level, and MapReduce job-

and task-level results. We show evidence of the diversity

of the queries proposed, in terms of execution time and

resource consumption (including I/O).

II. DESCRIPTION OF THE BTWORLD USE CASE

In this section, we describe the BTWorld use case from

a big data perspective. Started in 2009 and ongoing, the

BTWorld project [8] aims to measure the global BitTorrent

network, which is the largest Internet application in terms of

upstream traffic (generating 35% of global upstream traffic

in 2013 [18]). BTWorld collects periodically snapshots of the

global BitTorrent network, which it aims to use to answer

many types of research questions. We focus in this section,

in turn, on BTWorld background and terminology, on a

multi-terabyte BTWorld data set, and on exemplary research

questions BTWorld aims to answer. Outside the scope of this

work, we are gaining through BTWorld unique insights into

the evolution of BitTorrent over the past 3.5 years, extending

and complementing over a decade of theoretical work.

A. BitTorrent and BTWorld Overview

BitTorrent is a peer-to-peer (P2P) file-sharing protocol

whose success comes mainly from facilitating and incentiviz-

ing collaboration between peers. BitTorrent breaks up files

into SHA-1 hashed pieces that can be shared individually by

peers, even by peers who do not possess the complete file. For

each file shared in BitTorrent, the file name and the hashes of

its pieces form a metadata file (a torrent), which is uniquely

identified by a SHA-1 hash of the piece hashes and file name.

A swarm is a group of BitTorrent peers sharing the same

torrent. Among the peers of a swarm, seeders posses all the

pieces, while leechers possess only some of the pieces and are

downloading the remainder. To help peers meet each other, for

example to join a swarm for the first time, BitTorrent also uses

trackers, which are centralized servers that give upon request

lists of peers in the swarm of a particular torrent. Through this

mechanism, different trackers can generate different swarms

for the same torrent.

BTWorld focuses on understanding BitTorrent and its evo-

lution, which have a significant impact in the operation of the

entire Internet. Traditional BitTorrent theory, such as the fluid

model of Qiu and Srikant [19], can predict interesting steady-

state phenomena, but fails to account for complex transient

behavior (e.g., flashcrowds); for complex technical limita-

tions (e.g., firewalls); for complex inter-dependencies between

global BitTorrent elements (e.g., legal and auto-feed effects);

etc. As a consequence, many important questions related to

non-functional system properties—availability, performance,

etc.—cannot be answered. As an alternative, with BTWorld we

propose a data-driven approach to acquiring knowledge about

BitTorrent and perhaps even general distributed systems. By

collecting data that can be used in statistical models, machine

learning, and validation of theories, BTWorld promises to

solve many of the problems faced by the current theoretical

approaches and to lead to new theories. However, a data-driven

approach raises many challenges in building an efficient,

scalable, and cost-effective system for data processing and

preservation.

B. Data Collection

Studying P2P networks is difficult, as it normally involves

monitoring millions of non-cooperating computers. Instead,

BTWorld focuses on collecting data from the public trackers

of the global BitTorrent network. BTWorld sends queries

to (scrapes) each tracker and receives statistics about the

aggregated status of peers: for each swarm of the tracker,

the number of leechers, the number of seeders, and the total

number of downloads since the creation of the torrent.

The data is collected by several Linux servers using wget,

which is run at regular intervals by cron. The raw data is ben-

coded [20] scrape data, either plain text or gzip compressed,

depending on the tracker. The data retrieved through wget is

TABLE I: Overview of the complete BTWorld data set.

Collection period 2009-12-04 to 2013-06-17
Total size of data set 14.42 TB
Unique swarm samples (estimate) 150 billion
Unique trackers 2 369
Unique timestamps 70 443
Unique scrapes 8 422 938

0.00

0.25

0.50

0.75

1.00

90 B 1 kB 10 kB 100 kB 10 MB 250 MB

Scrape size

C
D

F

Fig. 1: CDF of mean scrape size per tracker.

compressed and stored in a date-based directory structure.

Table I presents an overview of the data set collected by

BTWorld since the project started in 2009. The total size

of files amounts to more than 14 TB. Figure 1 shows a

CDF of the mean scrape size for all trackers in the data set.

The distribution is skewed: the median scrape size is 23 kB,

but the largest 1% of the trackers return scrapes sized 200–

250 MB. Based on the observed mean sample size of 90

bytes, we estimate the BTWorld data set at approximately 150

billion swarm samples. For Section IV, we use samples of the

BTWorld data set ranging from 10 MB to 100 GB to avoid

excessive experiment durations.

C. P2P Analyst Questions

The data collected by BTWorld during its more than 3.5

years of operation, representing one of the largest longitudi-

nal studies of P2P systems, can be used to answer several

questions of interest to peer-to-peer (P2P) analysts [21], [8].

BTWorld can shed light on the evolution of BitTorrent.

It captures phenomena such as the seasonal variety in peer

population and the shift in the geographical location of the

major trackers. It can also show how BitTorrent usage changes.

Are the swarms becoming bigger? Is the number of peers per

tracker increasing?

The P2P analyst can extract information about the service

level provided by BitTorrent to its users by examining the

ratio between seeders and leechers in swarms, which is known

to be correlated with download speed [22] and with severe

degradation of performance during flashcrowds [23]. The life

time of swarms is an indicator of reliability [24]: for how long

are files available in the system? What is the redundancy level

of the system? Is there an overlap between trackers? Are the

same hashes present at multiple trackers?

Furthermore, the BTWorld data set contains information

about the effect of legal and technical disruptions on the

BitTorrent ecosystems [25]. It can show the decline of The

Pirate Bay as the leading tracker as a result of a lawsuit against

its operators and its replacement by OpenBitTorrent. It also

documents the existence of malicious spam trackers designed

to impede BitTorrent operation [8].

High-Level Language

Execution Engine

Storage Engine

SQL Pig Hive JAQL Sawzall

Hadoop YARN Haloop

 GFS HDFS S3

Fig. 2: Our logical workflow occupies the high-level layer of

the generic MapReduce software stack for data processing.

III. MAPREDUCE-BASED LOGICAL WORKFLOW

In this section we design a MapReduce-based data pro-

cessing approach that can be used to answer the P2P analyst

questions introduced in Section II-C. Our design relies on the

MapReduce stack (explained in Section III-A), which limits

applicability to the MapReduce ecosystem, but ensures that our

approach can readily be implemented using a variety of open-

source and commercial tools. The approach we propose is to

implement a logical workflow in a high-level language that

can be mapped automatically to the MapReduce programming

model and to a MapReduce execution engine. The logical

workflow, which does not rely on any practical tool in the

MapReduce stack, consists of a data layout (Section III-B)

and a workflow frame that coordinates the execution of several

SQL-like queries (Section III-C). The MapReduce-friendly

data layout and the diverse set of queries make the BTWorld

logical workflow useful as a MapReduce use case.

A. MapReduce Stack Overview

Recently, a general MapReduce stack has emerged as a

convenient structure for the diverse ecosystem of open-source

and commercial middleware that currently support the MapRe-

duce programming model [1]. Figure 2 depicts the three

main layers of the MapReduce stack. The high-level language

layer includes a variety of data manipulation languages and

allows analysts to interface with the MapReduce program-

ming model through the language of choice; for example,

Pig Latin [26], [27] is an SQL-like high-level language that

compiles automatically into MapReduce jobs. The execution

engine layer implements the MapReduce programming model

and typically provides the automatic, reliable, efficient use of

computational resources; Hadoop [2] and YARN are open-

source execution engines. The storage engine layer provides

similarly MapReduce-friendly services for data storage and

possibly preservation; the Hadoop Distributed File System

(HDFS [3]) is a storage engine.

The MapReduce stack is widely deployed and actively

maintained. Companies such as Hortonworks and Cloudera,

whose commercial platforms integrate all three layers of the

MapReduce stack, have provided thousands of updates to

the open-source Apache Hadoop in the past five years. The

MapReduce stack is typically deployed over a large distributed

system (e.g., cluster, grid, cloud), but middleware that can

use resources from parallel supercomputers, GPUs, and exotic

architectures is also under active development.

B. Data Set Layout

We design in this section a MapReduce-friendly data layout.

The raw tracker scrape data collected by BTWorld must be in-

troduced into the storage engine, ready for use by the execution

engine. The data layout design allows an implementation in

several of the open-source storage engines, e.g., HDFS.

First, in our design the raw tracker scrape data collected

by BTWorld is decompressed and decoded prior to insertion

into the storage engine. This produces tab-separated plain text

files, one per tracker and sample. The total size of the files

ranges from a few kilobytes for niche trackers with only a

few torrents to tens of gigabytes for the biggest trackers with

millions of torrents. The records in these files are represented

by tuples with the following six fields:

• Hash (H): a SHA-1 hash that uniquely identifies the

content transferred in BitTorrent. Represented as a 40-

character string of hexadecimal digits.

• Tracker (TR): an URL identifying the BitTorrent tracker.

• Timestamp (TS): the time when the status information was

logged. Represented as a 11-character ISO 8601 basic

format combined date and time representation.

• Seeders (S): the number of seeders in the swarm at the

moment when the sample is taken.

• Leechers (L): the number of leechers in the swarm at the

moment when the sample is taken.

• Downloads (D): the number of downloads up to the

moment when the sample is taken.

Second, the files are inserted into the storage engine using

a tracker-based directory structure. Small scrape files for the

same tracker and consecutive timestamps are concatenated to

reduce the amount of internal fragmentation.

C. Workflow of SQL-Like Queries

We design the BTWorld queries as SQL-like queries inte-

grated into the logical workflow. Similarly to the data layout,

the SQL-like queries can be implemented using several tools

from the MapReduce stack, e.g., the Pig Latin high-level

language or even Hadoop (through manual conversion into

the MapReduce programming model).

The logical workflow includes several inter-query depen-

dencies (see Section I). Figure 3 presents an overview of the

full logical workflow for the BTWorld use case. Each node

represents an SQL-like query; a query cannot start before the

data outputted by each predecessor query in the workflow has

been produced. Table II summarizes the acronym and meaning

of each query. As the workflow diagram and the table indicate,

the queries are not one-to-one conversions of every individual

analyst question. Instead, to increase performance we have

designed our workflow to reuse results (intermediary output

data) wherever possible [28].

We describe in the following four representative SQL-

like queries of the logical workflow. As we will show in

Section IV-C, they contain various inter-job and intra-job

dependencies (see Section I) when implemented and exhibit

various operational behavior when processing BTWorld data.

BTWorld records

ToT

ASAT

AH

TKT-L

TKT-G

TKNDH

TKS-L

TKS-G

TKH-L

TKH-G

 Query

 Data dependency

Fig. 3: The BTWorld logical workflow diagram.

A data dependency is a form of inter-query dependency.

TABLE II: Queries of the logical workflow in BTWorld.

Acronym Query Description

ToT Tracker status over time
SeT / SwT / SLT Sessions/Swarms/SeederLeecherRatio over time
AT / AS / AH Active trackers/swarms/tracker per timestamp
TKTL / TKTG Local/global top-K trackers
TKHL / TKHG Local/global top-K hashes
TKSL / TKSG Local/global top-K swarms
TKNDH Newborn/Dead hashes over time for top-K trackers

TrackerOverTime (ToT). How does a tracker evolve in

time? We designed this query to monitor the status of a tracker

in time with respect to the number of hashes, the number of

session (the sum between the seeders and leechers), and the

ratio of seeders to leechers. The query, shown in pseudo-code

in Listing 1, first groups the input data set by the key=(TR,

TS), and then applies different aggregation functions (e.g.,

count, sum, avg) on the value=(H, S, L, D) fields.

ActiveSwarms (AS). How many active hashes are in the

system at every moment of time? The output of the ToT query

can be further used to extract the number of active swarms

at any given time. The query (Listing 2 implements the same

operators as the ToT query (group and aggregate). However,

the AS query runs on a much smaller dataset, and is expected

to have different performance characteristics.

ActiveHashes (AH). How many active hashes are in the

Listing 1: Pseudo-code for the ToT query.

SELECT tracker, timestamp,

COUNT(hash) AS hashcount,

SUM(seeders + leechers) AS sessions,

AVG(leechers == 0 ?

seeders : seeders / leechers)

AS slratio

FROM logs

GROUP BY tracker, timestamp;

Listing 2: Pseudo-code for the AS query.

SELECT timestamp,

SUM(hashcount) AS swarms

FROM ToT

GROUP BY timestamp;

Listing 3: Pseudo-code for the AH query.

SELECT timestamp, COUNT(DISTINCT(hash))

FROM logs

GROUP BY timestamp;

Listing 4: Pseudo-code for the TKTG query.

SELECT *
FROM logs

NATURAL JOIN (

SELECT tracker

FROM TKTL

GROUP BY tracker

ORDER BY MAX(sessions) DESC

LIMIT k);

system at every moment of time? Despite the similarity with

the AS query, the definition of the AH query (Listing 3) differs

greatly. Because the output of ToT cannot be used to count

the number of active hashes, the full dataset is processed

again. The data is grouped by timestamp and the count-distinct

operation is performed on each group to determine the number

of unique hashes at each point in time.

Top-K-Trackers (TKT). Which are the most popular K

trackers? To answer this question, we process the output of the

ToT query in multiple successive stages. First, we extract the

top K trackers per timestamp (the local TKT query). Second,

we use these results to get the global top K and extract all data

for these trackers from the initial data set. Listing 4 presents

the pseudo-code for the global TKT query.

IV. EMPIRICAL EVALUATION

In this section, we present an empirical performance eval-

uation of the BTWorld use case. Overall, our results indicate

the complexity of the BTWorld use case and that processing

the entire BTWorld data set (over 14 TB, as described in

Section II-B) would take about 3 months with our current

infrastructure.

We have implemented the MapReduce-based logical work-

flow in the MapReduce stack through a set of open-source

tools, and executed it on subsets of increasing size of the

complete BTWorld data set. We describe in Section IV-A the

cluster and software stack, and the workload and workload-

related configuration used in our experiments.

For the performance characterization, we present system

results, including workflow execution time, system throughput,

global I/O utilization, and other resource consumption (all in

Section IV-B); an analysis of the Pig queries (Section IV-C);

and an analysis of MapReduce jobs (Section IV-D).

A. Experimental Setup

We implement the BTWorld use case using the follow-

ing MapReduce stack: the Hadoop distributed file system

(HDFS) as storage engine, Hadoop as execution engine, and

TABLE III: Configuration of MapReduce-cluster nodes.

Processor Dual-core 2.4 GHz AMD Opteron 280
Memory 4 GiB
Storage 2 TB WD, 64 MB cache
Network 1 Gbit/s Ethernet
Operating system Scientific Linux 4.6
JVM Sun Java 1.6.0 17
Hadoop Hadoop 1.0.0
Pig Pig 0.10.0

TABLE IV: Characteristics of the 100 GB input subset.

Records 1 412 762 467
Unique trackers 38
Unique timestamps 3 985
Unique hashes 1 811 983
Unique swarms 2 290 161

Pig Latin [26], [27] as the high-level language. HDFS and

Hadoop are popular MapReduce middleware. Pig Latin is

one of several open-source, MapReduce high-level languages

that offer an SQL-like language and can compile code to

MapReduce jobs.

We deploy our MapReduce stack on a dedicated 8-node

MapReduce cluster, with the hardware and software configu-

rations summarized in Table III. Each of the 7 worker nodes

runs two map slots and a single reduce slot. The data is stored

in blocks of 64 MB. The circular buffer that contains the output

generated by a map task is set to 100 MB. The content of the

buffer is spilled on disk when the buffer usage reaches 80%.

Each (Pig Latin) query uses one reduce task per gigabyte of

input data. The K parameter in the Top-K queries is set to 10

for trackers, and 10 000 for swarms and hashes.

We define several performance metrics. The makespan of

the workflow is defined as the time elapsed from the submis-

sion of the first query until the last-finishing query completes.

The throughput of the processing system is defined as the ratio

between the size of the data processed and the query execution

time. The execution time of a query or job is the time elapsed

from submission until completion. The resource utilization of

the system is measured in terms of CPU, network, memory,

and disk utilization. Disk utilization is measured as the number

of I/O operations per second (IOPS), and the amount of data

transferred to and from disk (MB/s), using the iostat tool.

In our experiments, we determine the makespan and the

throughput for increasingly larger subsets of the complete

BTWorld data set, with sizes spanning the range 10 MB to

100 GB. These larger subsets include months of data for

several BitTorrent trackers, and are thus representative for

the types of measurement studies already published about

BitTorrent [21], [23]. Table IV summarizes the characteristics

of the 100 GB BTWorld subset used in this work.

B. System-Level Performance Analysis

We evaluate the workflow makespan and system throughput

for each subset size, with the results summarized in Figure 4.

We find that the processing system delivers a stable perfor-

mance of about 2 MB/s for the larger subsets tested in this

work (5 GB and larger), with the corresponding increase in

 0

 400

 800

 1200

 0 20 40 60 80 100

IO
P

S

Time [m]

Min/Max
Mean

(a) Read IOPS

 0

 50

 100

 150

 0 20 40 60 80 100

B
a
n
d
w

id
th

 [
M

B
/s

]

Time [m]

Min/Max
Mean

(b) Read Bandwidth

 0

 250

 500

 750

 0 20 40 60 80 100

IO
P

S

Time [m]

Min/Max
Mean

(c) Write IOPS

 0

 100

 200

 300

 0 20 40 60 80 100

B
a
n
d
w

id
th

 [
M

B
/s

]

Time [m]

Min/Max
Mean

(d) Write Bandwidth

Fig. 5: I/O utilization of the cluster sampled every second and aggregated per minute during the execution of the BTWorld

workflow on the 10 GB data set. The gray areas represent the range of observed values.

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

M
a

k
e

s
p

a
n

 [
s
]

Dataset Size [MB]

(a) Workflow makespan

10
-3

10
-1

10
0

10
1

10
1

10
2

10
3

10
4

10
5

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Dataset Size [MB]

(b) Workflow throughput

Fig. 4: The makespan and throughput for all input data sizes.

The axes are logarithmic and do not start at 1.

workflow makespan as the subset size increases. For the small

data sets (10 MB to 1 GB), the limited amount of data also

limits the available parallelism: there are only a few mappers

and, up to 1 GB, there is only one reducer. The throughput,

or the processing speed, increases steadily as the input data

size increases, but is limited in our system to about 2 MB/s.

We turn our attention to the analysis of resource utilization,

which is based on the processing of the 10 GB subset—the

size after which the makespan increases almost linearly with

the increase of the input, while the throughput remains stable.

Figure 5 depicts the disk utilization of the cluster. We observe

for both reads and writes that the peak bandwidth is much

larger than the one-minute average bandwidth. This suggests

that most data is transferred in short bursts. We also observe

that our workload is relatively write-intensive around the one

hour mark, which coincides with the AH and top-K queries.

As they are not the main focus of our big data study,

we only discuss but do not depict the CPU, memory, and

network utilization. The CPU and memory utilization are fairly

constant during the execution of individual jobs, but vary

greatly across jobs. The utilization of CPU and memory appear

to be positively correlated, with overlapping peaks and valleys.

The network utilization shows less consistent behavior, but

is overall low; it reaches 100 Mbit/s for only a few seconds

during the experiment.

C. Pig-Level Query Analysis

We analyze performance of the workflow described in

Figure 3, first by comparing the performance of all queries,

then by conducting an in-depth analysis of the queries selected

in Section III-C. We use for this analysis the 100 GB data set,

which is the largest in our experiments and thus most stressful

for the system under test.

10
0

10
1

10
2

10
3

10
4

10
5

T
o
T

S
e
T

S
w

T

S
L
T

A
T

A
S

A
H

T
K

T
L

T
K

T
G

T
K

S
L

T
K

S
G

T
K

H
L

T
K

H
G

T
K

N
D

H

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
]

Fig. 6: The query execution times for the 100 GB data set.

Logarithmic vertical axis.

TABLE V: Query characteristics.

Starred queries (*) have inter-MapReduce-job dependencies.

Query Query Execution MapReduce Execution Time
Name Time (QET) [s] Jobs in Query Per Job [% of QET]

ToT 4 146 1 100
AS 104 1 100
AH* 8 110 2 70, 30
TKTG* 2 841 4 4, 4, 4, 88

We first compare the execution time of each query in this

use case. Figure 6 depicts the query execution times which

range from less than a minute (SwT) to several hours (TKHL).

These variations stem from the size of the input data sets used

by the queries as well as the complexity of their operations,

as discussed in Section III-C. We conclude that the BTWorld

use case includes diverse queries, whose runtime can differ by

several orders of magnitude.

We further study the impact on execution time of the

workload parameter K, which impacts the Top-K type of

queries [28]. We ran the TKH queries (local and global

combined) with values of K ranging from 10 to 100 000, but

the execution times (not depicted here) increased by just 12%

while increasing K by four orders of magnitude. For TKHL,

the majority of the time is spent on the first MapReduce job,

which performs a grouping of the full data set and is unaffected

by the value of K. We conclude that, for our implementation,

the chosen value of K has little impact on the execution time.

We further investigate the Pig queries selected in Sec-

tion III-C. We compare their overall characteristics in Table V,

then discuss them in turn. Overall, the execution times of these

queries are considerably different; however, an investigation at

the level of the MapReduce jobs that implement each queries

would obscure this difference. For example, the AH query is

implemented automatically by the Pig system as a sequence

of 2 MapReduce jobs, whose runtimes are of about 2 500 s

and 5 500 s. A 2 500 s MapReduce job can also be observed

as part of the set of jobs implementing the TKTG query. We

conclude that an analysis at the level of Pig queries can reveal

interesting information, which could be lost in a MapReduce-

level analysis.

ToT. The ToT query is executed as a single map-heavy

job. Only 6.66 MB of data are selected from the 100 GB

input in the map phase (selectivity of about 1:6 000). The high

selectivity can be attributed to the data set layout on HDFS.

The input data on HDFS is grouped by TR and sorted by

TS. As a result, grouping by (TR, TS) means that for most

keys all input records are processed in the same map task. The

map-side combiners can thus aggregate many records into one,

before they are shuffled and sent to the reducers.

AS/AT. The AS and AT queries are some of the small

post-processing queries used to extract useful information for

statistical analysis from the generic data sets produced by

queries such as ToT. They present an additional challenge in

optimization as the number of maps and reducers cannot be

tuned without negative impact on performance. For example,

using more than one reducer only increases the overhead of

launching tasks and spreading data.

AH. As the pseudocode in Listing 3 suggests, the AH query

should ideally group the data set by timestamp and count

the distinct hashes at every moment in time. However, a

straight-forward implementation in Pig, using the DISTINCT

operator, fails at runtime. The DISTINCT operator within a

grouping is executed by Pig in-memory in the reducers. For

large groups this results in an out-of-memory exception and

ultimately failure to complete the query. As a workaround, we

have manually selected the distinct hashes by selecting distinct

(H, TS) keys, grouping the result by (TS), and counting

the number of hashes per group. The resulting Pig query is

split in two MapReduce jobs. The first job groups the data set

by (H, TS) pair and outputs all distinct pairs. The second

job groups the output of the first by timestamp, and utilizes

combiners and reducers to count the number of hashes per

timestamp. Most of the time (90%) is spent for this job in the

mappers and combiners, similar to the ToT job.

TKTG. The global TKT query translates to a variety of

MapReduce jobs. The query begins with three short jobs that

create a list of the global top-K items, and finishes with a

large map-only job performing a join of this list and the full

data set. The latter job consumes most of the execution time

for this query. Due to the replicated join support of Pig, the

full list of top-K trackers is loaded into each of the mappers,

and the join is performed map-side. For our chosen value of

K the 100 GB input was reduced to 240 MB.

The performance of this query could be improved by

choosing a MapReduce stack with support for indexes. In the

final job of the global TKT query, the full data set is read to

extract all data for the top-K trackers. With an index on the

TABLE VI: Types of MapReduce jobs, their presence in the

MapReduce workflow, and SQL operator correspondence.

Job Jobs in the SQL Operator
Type MR Workflow Correspondence

Map-only 5 Join, projection
Map-mostly 6 Map-side aggregation
Map-reduce 6 Filtering
Reduce-mostly 9 Reduce-side aggregation, projection

tracker field, only the data for the top-K trackers would have to

be read from disk. The tracker-based directory structure of our

data on HDFS provides an opportunity to read only specific

directories as input to retrieve the data of specific trackers.

D. MapReduce-level Job Analysis

We analyze in this section the MapReduce jobs generated by

the Pig system from our BTWorld workflow implementation;

the results based on the run using the 100 GB data set are

summarized in Figure 7. Overall, we find that the BTWorld

use case results in MapReduce with diverse characteristics, in

line with previous characterizations of MapReduce workloads.

Similarly to the execution times observed for Pig queries

(Section IV-C), the job execution times (Figure 7(a)) span

several orders of magnitude. However, half of the jobs take

less than 2 minutes, which is consistent with the findings of

Chen et al. [12], [13].

The MapReduce jobs exhibit various intra-job dependencies.

Considering the duration of each phase of the computation

depicted in Figure 7(b), we distinguish the following types

of dependencies and summarize their presence in the entire

MapReduce workload in Table VI:

• Map-only: performing join operations between two par-

titions of the data set.

• Map-mostly: performing aggregations in the map-phase

with combiners.

• Map-reduce: filtering the input data set, extracting and

emitting the useful information to the next job.

• Reduce-mostly: performing aggregations in the reduce-

phase (no map-side combiners).

We observe diverse I/O profiles for the MapReduce jobs in

the BTWorld workflow. The reduce phase is statistically more

selective then the map phase, rarely outputting more data than

it receives as input (Figure 7(c)). Approximately 75% of jobs

generate less intermediate data than the full size of the input

data (Figure 7(d)). At the same time, there are a number of jobs

that produce significantly more intermediary data, up to 100

times the size of the input data, which causes time-consuming

I/O operations on the local file system.

V. DISCUSSION

In this section, we discuss the usefulness of the BTWorld

use case. We describe some of the lessons learned during the

course of this study. We discuss the performance results of

our empirical evaluation of BTWorld implemented using a

MapReduce stack. Finally, we introduce the idea of extending

the BTWorld use case towards a benchmark suite.

 0

 0.5

 1

10
0

10
2

10
4

C
D

F

Job Execution Time [s]

(a)

 0

 0.5

 1

10
0

10
2

10
4

C
D

F

Task Duration [s]

Map
Shuffle

Reduce

(b)

 0

 0.5

 1

10
-6

10
-3

10
0

10
3

C
D

F

Selectivity Factor

Map
Reduce

Job

(c)

 0

 0.5

 1

10
-6

10
-3

10
0

10
3

C
D

F

Disk I/O

Read
Write

(d)

Fig. 7: The MapReduce job profiles: a) the job durations distribution, b) the task durations distribution, c) the task selectivity

(ratio between output and input size), and d) the disk I/O (bytes read and written) between tasks, normalized by input size.

The main lesson we have learned from implementing the

BTWorld use case is that the process extends beyond a trivial

conversion of the P2P analyst’s questions into queries that

can be executed via a MapReduce stack. The data set layout

needed adjustments to fit the storage layer. When designing the

queries, performance improved by orders of magnitude by re-

designing the Pig queries to re-use intermediary results across

queries; however, this results in a more complex workflow

and the need to make intermediary data persistent. The design

of SQL-like queries in Pig was hampered by the inability

of Pig to run DISTINCT operators without failing (see Sec-

tion IV-C). Tuning a MapReduce system for a particular type

of job, which is a common approach when the jobs perform

very similar tasks, may be difficult for our use case—we

have shown in Section IV-D that our MapReduce jobs cover

four broad, distinct categories. Although some adjustments we

have made are specific to the chosen MapReduce stack (e.g.

the DISTINCT operator failing in Pig), we have also gained

insight that is applicable for a variety of processing platforms:

that storing and re-using intermediary results may improve

performance on many different platforms, that complex big

data workflows may be challenging for today’s data processing

stacks, etc.

With a throughput of just 2 MB/s (see Section IV-B),

the achieved performance seems poor. This can be partially

attributed to the small cluster size, relative to the data set size,

and also to the aged infrastructure of our testbed. We expect

to obtain better performance by upgrading the system to a

larger cluster, with more powerful nodes. However, several

system-independent factors also contribute to the reduced

performance: the input data is processed in 7 different jobs,

multiple MapReduce jobs output gigabytes of data each, and

the chosen MapReduce stack does not include indexing (in

Section IV-C we discuss several queries for which indexes

would greatly reduce the amount of data read and thus the

achieved performance). Modeling the performance of our use-

case is non-trivial, because the runtime of each MapReduce

job depends on input data and executed algorithm, and the

MapReduce jobs are diverse in selectivity, structure, and data

dependencies. We have also learned that understanding the

way groups of MapReduce jobs operate as single high-level

(Pig) queries is also important in engineering performance.

To create an industry-wide benchmarking suite, we have

started and we currently lead within the SPEC organization1

a joint, community-wide effort on benchmarking time-based

analytics platforms. The use case presented in this work

is a basic building block for such a benchmark, including

data structure and content, and a full time-based analytics

workflow. However, numerous challenges still need to be ad-

dressed: defining both full-data-set and incremental processing

components; defining multiple workflows and possibly entire

workloads; creating realistic input generators; devising metrics

for various non-functional system properties (e.g., reliability,

elasticity, energy-friendliness); etc.

VI. RELATED WORK

We have already discussed two studies of MapReduce

workloads from global-scale companies [12], [13]. We survey

in this section six MapReduce use cases and five representative

benchmarking suites. In contrast with these approaches, which

are summarized in Table VII, our BTWorld use case focuses

on a new application domain (system management, computer

science), and combines exhibiting high workload diversity

(various types of dependencies and operational profiles) with

a large-volume data set.

Closest to our work, MRBench [15] implements in MapRe-

duce the queries included in the TPC-H [33] database bench-

mark, which are representative for decision support. MRBench

executes complex business oriented queries with concurrent

data modifications on 3 GB of relational data. BTWorld

is considerably different in scope, application domain, data,

and workload. Also close to our work, the N-body Shop

group [14] analyzes massive amounts of data representing

the astrophysics application domain. The workload filters and

correlates data at different moments of time, using selection,

join, and projection operators, which target roughly 36 GB.

BTWorld exceeds the scope of N-Body Shop with a broader

range of algorithms and a larger and more complex workflow.

Much of the remaining previous work focuses on matrix

algorithms [6] [7], web search [30], saturation tools with rather

unrealistic workloads [16] [17], scalable data generation from

real workload traces [12], and various individual MapReduce

applications [31] [32].

1The Standard Performance Evaluation Corporation (SPEC) includes the
SPEC Research Group (RG), which aims to “foster the interaction between
industry and academia in the field”. We conduct work in the Cloud Working
Group, which is an SPEC RG branch that aims to develop the methodological
aspects of cloud benchmarking, including services for big data processing.

TABLE VII: The BTWorld use case compared with state-of-the-art MapReduce benchmarks and use cases.

Queries/Jobs Workload Diversity Data Set Data Layout Data Volume

MRBench [15] business queries high TPC-H relational data 3 GB

N-body Shop [14] filter and correlate data reduced N-body simulations relational data 50 TB

DisCo [6] co-clustering reduced Netflix [29] adjacency matrix 100 GB

MadLINQ [7] matrix algorithms reduced Netflix [29] matrix 2 GB

ClueWeb09 [30] web search reduced Wikipedia html 25 TB

GridMix [16], PigMix [17] artificial reduced random binary/text variable

HiBench [31], PUMA [32] text/web analysis high Wikipedia binary/text/html variable

WL Suites [12] production traces high - - -

BTWorld P2P analysis high BitTorrent logs relational data 14 TB

VII. CONCLUSION

Various scientific and industrial processes rely on being

able to automatically process large amounts of periodically

collected data, but currently only few use cases describe such

workloads. In this work, we have introduced from a big data

perspective BTWorld, a big data use case representative for

time-based analytics.

BTWorld aims at collecting, processing, and preserving

large amounts of periodic measurement data representing the

operation of the global BitTorrent network, which accounts for

a third of the global upstream traffic in 2013; thus, BTWorld

enables novel big-data-driven research in computer science.

We have described the use case, focusing on the BTWorld

data set and on several research questions that BTWorld

can answer. We have designed for the MapReduce stack a

logical workflow, which includes a data layout and SQL-like

queries that can answer the research questions efficiently. The

BTWorld workflow includes diverse queries and jobs, which

represent well three types of data dependency—inter-query,

inter-job, and intra-job. We have conducted an empirical study

of the logical workflow implemented in the Pig–Hadoop–

HDFS MapReduce stack; and analyzed system-level perfor-

mance, and the performance of Pig Latin queries and their

corresponding MapReduce jobs. The BTWorld workflow ex-

hibits challenging features: three or more orders of magnitude

differences in data sizes per observed item, data selectivity,

and job duration.

We have further discussed the usefulness of the BTWorld

use case, including a path towards a benchmarking suite,

through the help of our SPEC Cloud WG partners.

ACKNOWLEDGMENT

The first author works through the Honours Programme (Challent)

of the Delft University of Technology. This publication was supported

by the Dutch national program COMMIT, STW/NWO Veni grant

11881, and EU FP7 projects P2P-Next and QLectives.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing on
Large Clusters,” Comm. of the ACM, Vol. 51, no. 1, pp. 107–113, 2008.

[2] T. White, Hadoop: The Definitive Guide. Yahoo Press, 2010.
[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop

Distributed File System,” MSST, 2010.
[4] K. Yelick, S. Coghlan, B. Draney, R. S. Canon et al., “The Magellan

report on cloud computing for science,” US DoE, 2011.
[5] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,

“Improving MapReduce performance in heterogeneous environments,”
OSDI, 2008, pp. 29–42.

[6] S. Papadimitriou and J. Sun, “Disco: Distributed co-clustering with Map-
Reduce,” ICDM, 2008, pp. 512–521.

[7] Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda, and
Z. Zhang, “MadLINQ: large-scale distributed matrix computation for
the cloud,” EuroSys, 2012, pp. 197–210.

[8] M. Wojciechowski, M. Capotă, J. Pouwelse, and A. Iosup, “BTWorld:
Towards Observing the Global BitTorrent File-Sharing Network,” LSAP

Workshop in conjunction with HPDC, 2010.
[9] L. G. Valiant, “A bridging model for parallel computation,” Commun.

ACM, Vol. 33, no. 8, pp. 103–111, Aug. 1990.
[10] J. Dean and S. Ghemawat, “Mapreduce: a flexible data processing tool,”

Commun. ACM, Vol. 53, no. 1, pp. 72–77, 2010.
[11] Apache Hadoop Wiki, “Powered By Hadoop.” [Online]. Available:

http://wiki.apache.org/hadoop/PoweredBy
[12] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The Case for Eval-

uating MapReduce Performance Using Workload Suites,” MASCOTS,
2011, pp. 390–399.

[13] Y. Chen, S. Alspaugh, and R. Katz, “Interactive Analytical Processing in
Big Data Systems: A Cross-Industry Study of MapReduce Workloads,”
Proc. of the VLDB Endowment, Vol. 5, no. 12, pp. 1802–1813, 2012.

[14] S. Loebman, D. Nunley, Y.-C. Kwon, B. Howe, M. Balazinska, and J. P.
Gardner, “Analyzing massive astrophysical datasets: Can Pig/Hadoop or
a relational DBMS help?” Cluster, 2009, pp. 1–10.

[15] K. Kim, K. Jeon, H. Han, S.-g. Kim, H. Jung, and H. Y. Yeom,
“MRBench: A Benchmark for MapReduce Framework,” ICPADS, 2008.

[16] “The GridMix Hadoop Benchmark.” [Online]. Available: http://hadoop.
apache.org/docs/stable/gridmix.html

[17] “The PigMix benchmark,” [Online] http://wiki.apache.org/pig/PigMix.
[18] Sandvine, “Global Internet Phenomena Report 1H2013.”
[19] D. Qiu and R. Srikant, “Modeling and performance analysis of

BitTorrent-like peer-to-peer networks,” SIGCOMM, 2004.
[20] B. Cohen, “The BitTorrent Protocol Specification.” [Online]. Available:

http://bittorrent.org/beps/bep 0003.html
[21] C. Zhang, P. Dhungel, D. Wu, and K. W. Ross, “Unraveling the bittorrent

ecosystem,” IEEE TPDS, Vol. 22, no. 7, pp. 1164–1177, 2011.
[22] M. Meulpolder, L. D’Acunto, M. Capotă, M. Wojciechowski, J. A.

Pouwelse, D. H. J. Epema, and H. J. Sips, “Public and private BitTorrent
communities: A measurement study,” IPTPS, 2010.

[23] B. Zhang, A. Iosup, J. A. Pouwelse, and D. H. J. Epema, “Identifying,
analyzing, and modeling flashcrowds in BitTorrent,” P2P, 2011.

[24] R. Bhagwan, S. Savage, and G. M. Voelker, “Understanding availability,”
IPTPS, 2003, pp. 256–267.

[25] T. Karagiannis, A. Broido, N. Brownlee, kc claffy, and M. Faloutsos,
“Is P2P dying or just hiding?” GLOBECOM, 2004, pp. 1532–1538.

[26] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “PigLatin:
A Not-So-Foreign Language for Data Processing,” SIGMOD, 2008.

[27] A. F. Gates et al., “Building a High-Level Dataflow System on top
of Map-Reduce: the Pig Experience,” Proc. of the VLDB Endowment,
Vol. 2, no. 2, pp. 1414–1425, 2009.

[28] T. Hegeman, B. Ghit,, M. Capotă, J. Hidders, D. Epema, and A. Iosup,
“The BTWorld Use Case for Big Data Analytics: Description, MapRe-
duce Logical Workflow, and Empirical Evaluation,” Tech. Rep. PDS-
2013-008, 2013.

[29] “Netflix prize.” [Online]. Available: http://www.netflixprize.com
[30] “The ClueWeb09 Dataset.” [Online]. Available: http://lemurproject.org
[31] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The Hibench Bench-

mark Suite: Characterization of the MapReduce-based Data Analysis,”
ICDEW, 2010, pp. 41–51.

[32] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar, “PUMA: Purdue
MapReduce Benchmarks Suite,” Tech. Rep.

[33] TPPC, “TPC-H Benchmark Specification,” 2008, www.tpc.org/tpch.

