
Dynamic Resource Provisioning for Concurrent
MapReduce Frameworks

Bogdan Ghiţ
Delft University of Technology

the Netherlands
b.i.ghit@tudelft.nl

Dick Epema
Delft University of Technology

the Netherlands
d.h.j.epema@tudelft.nl

ABSTRACT
Running multiple instantiations of the MapReduce frame-
work (MR-clusters) concurrently in a multicluster system or
datacenter enables workload and data isolation, which is at-
tractive for many organizations. We provision MR-clusters
such that they receive equal levels of service by assigning
each such cluster a dynamically changing weight that indi-
cates its fair share of the resources.

1. INTRODUCTION
Despite the high scalability of the MapReduce framework

in large infrastructures such as multicluster systems and dat-
acenters, isolating MapReduce workloads and their data is
very attractive for many organizations. In this paper, we
propose a dynamic resource management approach for pro-
visioning multiple MR-clusters in a single multicluster or
datacenter, such that distinct MR-clusters receive equal lev-
els of service. Towards this end, we differentiate each MR-
cluster by assigning a dynamically changing weight to it that
indicates its fair share relative to all active MR-clusters.

Running multiple MR-clusters concurrently within the same
physical infrastructure enables four types of isolation, viz.
with respect to performance, to data management, to fault
tolerance, and to versioning [1]. Deploying each MR-cluster
on a static partition of the system may lead to poor resource
utilization, as some MR-clusters may be accessed more fre-
quently than others, creating an imbalance between the lev-
els of service they receive. To dynamically change the re-
source allocations at runtime, we need to understand which
factors can be used to differentiate the MR-clusters. Assum-
ing no apriori knowledge about the workloads, we propose
three factors that can be used to establish the fair shares of
the MR-clusters: the size of their workloads, the utilization
of their allocated resources, and their service levels.

As MapReduce is usually employed for data-intemsive ap-
plications, one of the main issues is to limit the overhead of
reorganizing the data when growing or shrinking an MR-
cluster when its share changes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

2. BACKGROUND
In this paper we take an experimental approach to re-

source provisioning MR-clusters. The testbed for our ex-
periments is the multicluster system DAS-4 1, which is a
wide-area computer system dedicated to research in paral-
lel and distributed computing that is currently in its fourth
generation and that consists of six clusters distributed in
institutes and organizations across the Netherlands.

Koala [3] is a grid resource manager developed for multi-
cluster systems such as the DAS-4 with the goal of designing,
implementing, and analyzing scheduling strategies for var-
ious application types (e.g., map-reduce, cycle scavenging
jobs, workflows). We have recently extended Koala with
a MapReduce runner [1], which is a specialized module for
scheduling and deploying MR-clusters on demand.

3. FAIR RESOURCE ALLOCATIONS
Our basic goal when provisioning resources to multiple

MR-clusters in a single multicluster or datacenter is to give
them equal levels of service (e.g., throughput, response time).
In order to achieve this, we want to assign each MR-cluster
a dynamically changing weight that indicates the share of
the resources it is entitled to.

3.1 System Model
When growing or shrinking an MR-cluster, both the stor-

age and compute layers need to be adjusted. Consequently,
we distinguish three types of nodes in the system. The core
nodes are fully functional nodes allocated for the MR-cluster
deployment, with components in both layers of the MR-
cluster. The transient nodes are temporary compute nodes
used to grow MR-clusters after their initial deployment. Re-
moving transient nodes does not change the distribution of
the data. The transient-core nodes are temporary fully func-
tional nodes, also used to grow active MR-clusters. Their
removal requires replicating the data they locally store.

3.2 Notion of Fairness
The MR-clusters are entitled to shares of the total data-

center capacity proportional to their given weights. For an
MR-cluster i, the difference between the fraction ri(t) of re-
sources it currently has and the share of resources it should
have based on its weight wi(t) at time t is defined as its
temporal discrimination [2]: Di(t) = ri(t) − wi(t).

We define the discrimination of MR-cluster i during a time

1http://cs.vu.nl/das4

 0

 20

 40

 60

 80

 100

 120

20 40 60 80

T
im

e
 [

s
]

Fraction of nodes removed [%]

c=20
c=30
c=40

(a)

 0

 20

 40

 60

 80

 100

 120

 140

20 40 60 80

T
im

e
 [

s
]

Fraction of nodes removed [%]

IB
GbE

(b)

 0

 250

 500

 750

 1000

10 20 30 40

T
im

e
 [

s
]

Fraction of nodes removed [%]

TJ
TR

(c)

Figure 1: The average per-node reconfiguration time depending on the fraction of removed nodes for (a) MR-
clusters with c core nodes and for (b) two networks on MR-clusters with 20 core nodes. The job execution
time TJ and the reconfiguration time TR when removing different fractions of nodes from a 20-node MR-cluster
running a WordCount job, after 25% of the map tasks have completed (c).

interval [t1, t2] by

Di(t1, t2) =

∫ t2

t1

(ri(t) − wi(t))dt. (1)

Setting t1 = ai and t2 = di with ai and di the moments of
the request for the deployment and the shutdown of the MR-
cluster, respectively, we obtain the overall discrimination of
the MR-cluster. The fairness of the system over a certain
interval is indicated by the global discrimination, which is
defined as the variance V ar(D) across all active MR-clusters
during that interval.

3.3 Policies for Setting Weights
We define three sets of policies for setting the weights of

active MR-clusters, which are based on: the demands of
the workloads submitted to them (demand-driven, e.g., in
terms of the numbers of jobs or tasks in queue), the usage
of the resources they are currently allocated (usage-driven),
and the service they obtain in terms of one of our metrics
(service-driven). In all of these policies, the weights of the
MR-clusters and the global discrimination are recomputed
for every interval of length T . Only when the global dis-
crimination exceeds a threshold τ are the allocations of the
MR-clusters actually changed according to the new weights.

3.4 Resizing Active MR-clusters
MR-clusters with positive discrimination have to shrink

their resources. There are two options for doing so: non-
preemptive, with the data replication running in parallel
with the workload execution, or preemptive, with the shrink-
ing phase starting after the running tasks are killed. MR-
clusters with negative discrimination have to grow their re-
sources. Based on the type of additional nodes used, there
are two options: growing with transient or with transient-
core nodes.

4. EXPERIMENTS
In our experiments, we assess the performance of our three

sets of policies for different values of T and τ with (non-
)preemptive shrinking and core/transient growing. As a ba-
sis, we perform a set of micro-experiments in which we as-
sess for instance the reconfiguration overhead when shrink-
ing an active MR-cluster, and the performance of running
single MapReduce applications based on the number of core
and transient nodes allocated to it. For the former micro-
experiment, we set up MR-clusters of different sizes with
10 GB per node replicated 3 times. We find that the cluster

 0

 50

 100

 150

 200

 250

 300

 350

WordCount Sort

E
x
e

c
u

ti
o

n
 T

im
e

 [
s
]

MR Application

f=0.25
f=0.50
f=0.75
f=1.00

Figure 2: Running WordCount (40 GB) and Sort (50
GB) on 40-node MR-clusters with different fractions
f of core nodes.

size and the fraction of nodes removed have a significant im-
pact on the reconfiguration time (Figure 1a). Furthermore,
increasing the network bandwidth to 20 Gb/s improves the
reconfiguration time with only less than 20% (Figure 1b).
Shrinking an active MR-cluster while running a job increases
the reconfiguration time (Figure 1c). For the latter micro-
experiment, we set up MR-clusters of different fractions of
core nodes and we run two common MapReduce applica-
tions. We find that WordCount scales better on transient
nodes than Sort (Figure 2).

5. CONCLUSION
Dynamic resource provisioning to multiple instantiations

of the MapReduce framework deployed in single multiclus-
ters or datacenters is of both practical and theoretical inter-
est. In this paper we propose a form of such provisioning
that targets equal levels of service for the active MR-clusters.

6. ACKNOWLEDGMENT
This work was partially funded by the Dutch national

research program COMMIT.

7. REFERENCES
[1] B. Ghit, N. Yigitbasi, and D. Epema. Resource

Management for Dynamic MapReduce Clusters in
Multicluster Systems. In IEEE High Performance
Computing, Networking, Storage and Analysis (SCC),
SC Companion, 2012.

[2] D. Raz, H. Levy, and B. Avi-Itzhak. A
Resource-Allocation Queueing Fairness Measure. In
SIGMETRICS 2004.

[3] O. Sonmez, H. Mohamed, and D. Epema. On the
Benefit of Processor Co-Allocation in Multicluster Grid
Systems. IEEE Trans. on Parallel and Distributed
Systems, 21:778–789, 2010.

