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ABSTRACT
Running multiple instantiations of the MapReduce frame-
work (MR-clusters) concurrently in a multicluster system or
datacenter enables workload and data isolation, which is at-
tractive for many organizations. We provision MR-clusters
such that they receive equal levels of service by assigning
each such cluster a dynamically changing weight that indi-
cates its fair share of the resources.

1. INTRODUCTION
Despite the high scalability of the MapReduce framework

in large infrastructures such as multicluster systems and dat-
acenters, isolating MapReduce workloads and their data is
very attractive for many organizations. In this paper, we
propose a dynamic resource management approach for pro-
visioning multiple MR-clusters in a single multicluster or
datacenter, such that distinct MR-clusters receive equal lev-
els of service. Towards this end, we differentiate each MR-
cluster by assigning a dynamically changing weight to it that
indicates its fair share relative to all active MR-clusters.

Running multiple MR-clusters concurrently within the same
physical infrastructure enables four types of isolation, viz.
with respect to performance, to data management, to fault
tolerance, and to versioning [1]. Deploying each MR-cluster
on a static partition of the system may lead to poor resource
utilization, as some MR-clusters may be accessed more fre-
quently than others, creating an imbalance between the lev-
els of service they receive. To dynamically change the re-
source allocations at runtime, we need to understand which
factors can be used to differentiate the MR-clusters. Assum-
ing no apriori knowledge about the workloads, we propose
three factors that can be used to establish the fair shares of
the MR-clusters: the size of their workloads, the utilization
of their allocated resources, and their service levels.

As MapReduce is usually employed for data-intemsive ap-
plications, one of the main issues is to limit the overhead of
reorganizing the data when growing or shrinking an MR-
cluster when its share changes.
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2. BACKGROUND
In this paper we take an experimental approach to re-

source provisioning MR-clusters. The testbed for our ex-
periments is the multicluster system DAS-4 1, which is a
wide-area computer system dedicated to research in paral-
lel and distributed computing that is currently in its fourth
generation and that consists of six clusters distributed in
institutes and organizations across the Netherlands.

Koala [3] is a grid resource manager developed for multi-
cluster systems such as the DAS-4 with the goal of designing,
implementing, and analyzing scheduling strategies for var-
ious application types (e.g., map-reduce, cycle scavenging
jobs, workflows). We have recently extended Koala with
a MapReduce runner [1], which is a specialized module for
scheduling and deploying MR-clusters on demand.

3. FAIR RESOURCE ALLOCATIONS
Our basic goal when provisioning resources to multiple

MR-clusters in a single multicluster or datacenter is to give
them equal levels of service (e.g., throughput, response time).
In order to achieve this, we want to assign each MR-cluster
a dynamically changing weight that indicates the share of
the resources it is entitled to.

3.1 System Model
When growing or shrinking an MR-cluster, both the stor-

age and compute layers need to be adjusted. Consequently,
we distinguish three types of nodes in the system. The core
nodes are fully functional nodes allocated for the MR-cluster
deployment, with components in both layers of the MR-
cluster. The transient nodes are temporary compute nodes
used to grow MR-clusters after their initial deployment. Re-
moving transient nodes does not change the distribution of
the data. The transient-core nodes are temporary fully func-
tional nodes, also used to grow active MR-clusters. Their
removal requires replicating the data they locally store.

3.2 Notion of Fairness
The MR-clusters are entitled to shares of the total data-

center capacity proportional to their given weights. For an
MR-cluster i, the difference between the fraction ri(t) of re-
sources it currently has and the share of resources it should
have based on its weight wi(t) at time t is defined as its
temporal discrimination [2]: Di(t) = ri(t) − wi(t).

We define the discrimination of MR-cluster i during a time

1http://cs.vu.nl/das4
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Figure 1: The average per-node reconfiguration time depending on the fraction of removed nodes for (a) MR-
clusters with c core nodes and for (b) two networks on MR-clusters with 20 core nodes. The job execution
time TJ and the reconfiguration time TR when removing different fractions of nodes from a 20-node MR-cluster
running a WordCount job, after 25% of the map tasks have completed (c).

interval [t1, t2] by

Di(t1, t2) =

∫ t2

t1

(ri(t) − wi(t))dt. (1)

Setting t1 = ai and t2 = di with ai and di the moments of
the request for the deployment and the shutdown of the MR-
cluster, respectively, we obtain the overall discrimination of
the MR-cluster. The fairness of the system over a certain
interval is indicated by the global discrimination, which is
defined as the variance V ar(D) across all active MR-clusters
during that interval.

3.3 Policies for Setting Weights
We define three sets of policies for setting the weights of

active MR-clusters, which are based on: the demands of
the workloads submitted to them (demand-driven, e.g., in
terms of the numbers of jobs or tasks in queue), the usage
of the resources they are currently allocated (usage-driven),
and the service they obtain in terms of one of our metrics
(service-driven). In all of these policies, the weights of the
MR-clusters and the global discrimination are recomputed
for every interval of length T . Only when the global dis-
crimination exceeds a threshold τ are the allocations of the
MR-clusters actually changed according to the new weights.

3.4 Resizing Active MR-clusters
MR-clusters with positive discrimination have to shrink

their resources. There are two options for doing so: non-
preemptive, with the data replication running in parallel
with the workload execution, or preemptive, with the shrink-
ing phase starting after the running tasks are killed. MR-
clusters with negative discrimination have to grow their re-
sources. Based on the type of additional nodes used, there
are two options: growing with transient or with transient-
core nodes.

4. EXPERIMENTS
In our experiments, we assess the performance of our three

sets of policies for different values of T and τ with (non-
)preemptive shrinking and core/transient growing. As a ba-
sis, we perform a set of micro-experiments in which we as-
sess for instance the reconfiguration overhead when shrink-
ing an active MR-cluster, and the performance of running
single MapReduce applications based on the number of core
and transient nodes allocated to it. For the former micro-
experiment, we set up MR-clusters of different sizes with
10 GB per node replicated 3 times. We find that the cluster
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Figure 2: Running WordCount (40 GB) and Sort (50
GB) on 40-node MR-clusters with different fractions
f of core nodes.

size and the fraction of nodes removed have a significant im-
pact on the reconfiguration time (Figure 1a). Furthermore,
increasing the network bandwidth to 20 Gb/s improves the
reconfiguration time with only less than 20% (Figure 1b).
Shrinking an active MR-cluster while running a job increases
the reconfiguration time (Figure 1c). For the latter micro-
experiment, we set up MR-clusters of different fractions of
core nodes and we run two common MapReduce applica-
tions. We find that WordCount scales better on transient
nodes than Sort (Figure 2).

5. CONCLUSION
Dynamic resource provisioning to multiple instantiations

of the MapReduce framework deployed in single multiclus-
ters or datacenters is of both practical and theoretical inter-
est. In this paper we propose a form of such provisioning
that targets equal levels of service for the active MR-clusters.
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