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Abstract—Companies, scientific communities, and individual
scientists with varying requirements for their compute-intensive
applications may want to use public Infrastructure-as-a-Service
clouds to increase the capacity of the resources they have access
to. To enable such access, resource managers that currently
act as gateways to clusters may also do so for clouds, but for
this they require new architectures and scheduling frameworks.
In this paper, we present the design and implementation of
KOALA-C, which is an extension of the KOALA multicluster
scheduler to multicloud environments. KOALA-C enables uniform
management across multicluster and multicloud environments by
provisioning resources from both infrastructures and grouping
them into clusters of resources called sites. KOALA-C incorporates
a comprehensive list of policies for scheduling jobs across multiple
(sets of) sites, including both traditional policies and two new
policies inspired by the well-known TAGS task assignment policy
in distributed-server systems. Finally, we evaluate KOALA-C

through realistic simulations and real-world experiments, and
show that the new architecture and in particular its new policies
show promise in achieving good job slowdown with high resource
utilization.

I. INTRODUCTION

Companies and scientific communities with large compute-
intensive workloads that are used to build and maintain their
own hardware infrastructure, can now acquire seemingly un-
limited computing power from public IaaS cloud providers,
for example to compensate for transient shortages of com-
puting resources in their own infrastructure. Such a resource
usage pattern creates a new environment with heterogeneous
resources including multiple clusters and multiple IaaS clouds
(e.g., Amazon EC2 and private clouds), or an integrated
multicluster and multicloud environment, to which traditional
job scheduling and resource management has to be extended.
In this paper we propose the KOALA-C resource manager along
with several scheduling policies, and their analysis, for man-
aging compute-intensive workloads in integrated multicluster
and multicloud environments.

Integrating multicluster and multicluster resources raises
several non-trivial challenges, which we address in this work.
First, the resource provisioning interfaces and capabilities of
clusters and commercial IaaS clouds may be very different,
yet the integrated environment should for simplicity provide a
uniform interface to its user. Multicluster resources do not need
to limit the maximal allocation of resources, because the size
of the physical infrastructure is limited anyway (otherwise,
the use of cloud resources would not be needed at all), but
cloud resources need to be provisioned under strict limits
(otherwise, the user may unknowingly exceed the available

budget). Among IaaS clouds, some may charge for the usage
of resources (e,g., commercial public clouds such as Amazon
EC2) whereas others may not (e.g., private clouds that use
non-payment related accounting). For managing IaaS cloud re-
sources, the many existing approaches [1]–[4] propose manag-
ing resources individually, creating virtual clusters by grouping
and managing multiple resources for a longer period of time,
etc. In this work, we employ a virtual cluster architecture that
uniformly supports cluster and cloud resources.

Second, managing the integrated multicluster and mul-
ticluster resources requires a compliant scheduling policy
framework. Various approaches to the design and evaluation
of policies for multicluster systems (see [5], [6] and refer-
ences within) and for IaaS clouds ([3], [4], [7]) have been
investigated. In particular, two major types of policies, namely
resource provisioning policies for making resources accessible
only for as long as needed and job allocation policies for
assigning jobs to accessible resources, must be supported by
the scheduling policy framework. Although many scheduling
policies have already been proposed, we show in this article
that there is still much room for innovation in scheduling
architectures.

Third, in using integrated multicluster and multicloud envi-
ronments, we investigate the research question how to manage
the different resources efficiently?, that is, how to provision
resources and how to schedule jobs to them with good
performance-cost tradeoffs? This essential scheduling problem
is particularly challenging for the integrated multicluster and
multicloud environment, where truly diverse jobs—short and
long jobs, single-processor and highly parallel jobs, etc.—may
share the same set of resources. Traditional approaches that
allow jobs to share resources irrespective of the range of job
runtimes have often been disadvantageous for short jobs, who
may be slowed down [8] disproportionately while waiting for
long jobs to complete. Slow down fairness can be achieved in
offline scheduling but is expensive to compute even for single-
cluster environments [9], and online fair scheduling remains
challenging. Good results in online scheduling have been
achieved [9]–[11] when the the jobs are split by the user into
disjoint sets of short tasks, but this job model does not support
the rigid parallel jobs present in scientific workloads and is
thus unsuitable for our work. Isolating jobs of very different
sizes (runtime, number of processors, etc.) on disjoint sets of
resources has often been employed in large-scale systems, and
in particular in supercomputing systems [12], with good results
in alleviating the job slowdown problem, but also possibly
leading to low resource utilization. In this work, we take this
latter approach, and focus on a trade-off between partitioning
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Fig. 1: The system architecture of KOALA-C.

and sharing of resources, with the aim to support diverse jobs.

Our main contribution in this work is threefold:

1) The design of KOALA-C, a resource management
architecture for integrated multicluster and multicloud
environments that uses the notion of clusters of
resources or sites to achieve efficient system oper-
ation (Section III). Managing sites instead of single
resources allows us to achieve a trade-off between
quality of service for short jobs and utilization of
resources, and enables a wide variety of scheduling
policies.

2) To efficiently use complex sets of resources provi-
sioned from both clusters and clouds, we design two
new scheduling policies that configure sites to service
jobs in specific ranges (Section IV). In addition, we
adapt four traditional non-preemptive policies from
single resources to sites.

3) A comprehensive experimental evaluation of our ar-
chitecture and policies, through both trace-based sim-
ulations and real-world evaluation in the integrated
environment consisting of our DAS-4 system [13]
configured as a multicluster system or (on a subset
of resources) as an OpenNebula private cloud, and
Amazon EC2 (Section V). We use as baselines for
comparison the four traditional policies we have
adapted to sites.

II. SYSTEM MODEL

In this section, we first describe our job model, and then,
we propose a scheduling structure for executing sequential
and parallel compute-intensive jobs on multiple clusters and
clouds.

A. Job Model

In this paper, we only consider compute-intensive work-
loads consisting of sequential or parallel high-performance
applications. The jobs running these applications are assumed
to be rigid in that they do not change their sizes (in terms
of the numbers of processors they use) during their runtimes.
In the simulations they are represented simply by their size
and runtime, in the real experiments they run actual MPI
applications. We assume that a parallel job can use any subset
of nodes of a single cluster or of a public or private cloud.
Support for other types of compute-intensive applications such

as Bags-of-Tasks and Workflows does exist in the original
multicluster version of KOALA, but so far we have not extended
it to clouds, which would be much of an engineering exercise.
In some of our policies jobs may need to be preempted, but
then they will be restarted rather than resumed from where
they were stopped, so we don’t require special support for
preemption.

B. Resource Management Model

We assume that the integrated multicluster and multicloud
system to be considered consists of sites representing separate
clusters, private, or public clouds that each can be accessed
separately. We treat these sites as being homogeneous and we
don’t distinguish resources based on their network location.
Each cluster site is assumed to have its own Local Resource
Manager (LRM) responsible for managing and allocating re-
sources through which jobs can be submitted, either direcly by
the user or by some higher-level resource manager. Similarly,
clouds, whether private or public, can be accessed through the
cloud API offered by the specific cloud manager installed.

The aim of this paper is to design and implement a Global
Resource Manager (GRM) that interfaces with the LRMs of
the cluster sites and with the cloud API of the cloud sites.
The GRM we present in this paper is KOALA-C, which is an
extension of KOALA [5]. One of the components we added
to KOALA, which already did have an interface to SGE as
the LRM of clusters, were interfaces to the OpenNebula and
Amazon EC2 APIs for submitting jobs. All jobs are submitted
by users to the GRM, which selects appriopriate sites for them
to be executed. Every job is assumed to be able to be executed
on all sites. The two main differences between clusters and
cloud for the purposes of this paper are that the resources
of clusters are “always present and accessible,” while cloud
resources first have to be leased before they can be allocated
by KOALA-C, and that with clouds, a cost is associated, which
we use as an additional metric in our experiments.

III. KOALA-C: A MULTICLUSTER, MULTICLOUD

RESOURCE MANAGEMENT ARCHITECTURE

In this section, we present the KOALA-C resource man-
agement system for integrated multicluster and multicloud
environments. First, we explain the overall system architecture
of KOALA-C, and then we present the scheduling policy
framework created by its architecture.

A. System Architecture

The architecture of the KOALA-C scheduler, which is
shown in Figure 1, is a combination of the common architec-
tures used for multicluster and for (multi-)cloud scheduling.
Steps 1–4 in Figure 1 are commonly employed in multicluster
systems (e.g., in our KOALA [5] multicluster scheduler). Users
submit jobs (step 1 in Figure 1) that are enqueued by the
scheduler. Jobs are allocated and later executed on available
resources through a resource manager and its scheduling
framework, configured by policies (step 2). The results of
job execution are returned to the user (step 3). Scheduler and
system operations are logged for later accounting processes
(step 4, concurrently with the other steps). From existing cloud
schedulers, such as our earlier SkyMark [4], KOALA-C borrows
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the common architecture of provisioning resources via leasing
and releasing operations (step 2).

In addition to features borrowed from existing multicluster
and multicloud architectures, KOALA-C has two distinctive
features: uniform resource management across multicluster
and multicloud resources leading to the single notion of sites,
and a mechanism for configuring and managing sets of sites.

Uniform resource management across multicluster and
multicloud resources: The resource manager of KOALA-C

dynamically provisions heterogeneous resources from multi-
cluster systems and from multiple cloud environments, and
groups them into clusters of resources. To disambiguate them
from physical clusters, from hereon they are referred to as
sites.

We design sites to use a dynamic virtual cluster structure
(VCS) architecture, which consist of two types of nodes: one
head node and a number of worker nodes with local storage.
The head node controls all the nodes in the VCS, and runs
a daemon that can launch jobs for execution on the worker
nodes. The head node can configure the VMs leased from
clouds, so that user jobs can be executed on clouds without
modification. This architecture allows sites to support uni-
formly resources from the two types of infrastructure, clusters
and clouds, despite their different resource management. When
a site is composed only from the resources of a cluster or
of a cloud, we refer to it as a cluster site and a cloud site,
respectively. The VCS is a simplified version of the generalized
virtual cluster [14]–[16].

Management of sites: Given the complete set of sites a
KOALA-C deployment has to work with, the KOALA-C resource
manager can configure this set into multiple subsets of sites
(subsystems) for use by scheduling policies. For instance, two
disjoint sets of sites may service the jobs of different user
communities; or one set may include all the (free) cluster
sites in one set and another all the (pay-per-use) cloud sites.
In the simplest configuration, there is only a single set con-
taining all sites. We introduce for this case, in Section IV-A,
four traditional policies that can be used in our scheduling
framework. For multiple subsystems, we define in Section IV
two new scheduling policies, and we conduct a comprehensive
evaluation of these policies in Section V.

Architecturally, a key design choice for KOALA-C is that
sites are grouped into subsystems that may share resources.
Traditional, mutually exclusive partitioning [12] only allows
sites to belong to a single subsystem. However, mutually
exclusive partitioning can lead to low resource utilization and
to high job slowdown, when large and small jobs coexist in the
system [17]. In our design, we allow sites to belong to one or
several subsystems, which enables resource multiplexing and
promises to enable a trade-off between improved resource uti-
lization and reduced job slowdown. We explore in Section IV-C
the use of subsystems that share sites.

B. Scheduling Policy Framework

KOALA-C provides a scheduling policy framework (shown
in Figure 1) , which consists of a module that configures and
manages subsystems, a resource provisioning module for IaaS
clouds, and, among the auxiliary modules, a predictor module.

Using this framework, KOALA-C may dynamically change
the amount and shares of resources given to each subsystem
through specific resource provisioning policies, while at the
same time reconfiguring the policies of each subsystem. The
current version of KOALA-C provides a library of scheduling
policies, which we describe in Section IV.

The key module of the KOALA-C policy framework is the
module for the configuration and management of subsystems,
which allows the system administrator to select, from an ex-
isting library, the policy that creates a subsystem organization
(chain, hierarchy, etc.), and that allocates jobs dynamically to
each and between the subsystems. This also enables the design
and implementation of a wide variety of scheduling policies
that dynamically decide on which resources each job will run,
and in particular how to organize subsystems of multicuster
and multicloud environments.

We further describe the resource provisioning and the
predictor modules, in turn.

Resources from IaaS clouds have to be specifically pro-
visioned, subject to cost and other restrictions addressed by
a provisioning policy. Although KOALA-C can conceptually
employ any of the many provisioning policies commonly
used in clouds (see, for example, our recent exploration of
8 provisioning policies [4]), we use in this paper a single,
traditional resource provisioning policy, On-Demand (OD,
explored for example in [4]). The OD policy leases more
VMs and assigns them to a cloud site to meet job demand,
and releases idle VMs during off-peak hours. This policy
treats differently clouds that provide resources for free (for
example, private clouds) and clouds that charge for resources
(for example, public commercial clouds such as Amazon EC2,
which charges resource usage in hourly increments). On a
cloud with free resource use, OD releases VMs after they
have been idle for a certain amount of time. On a non-free
cloud, OD releases idle VMs to match the charging model;
for Amazon, resources are released when they are close to
reaching another hour of their lifetime.

The auxiliary predictor module also reuses previous work
in job runtime and wait time estimation. Two of the allocation
policies we define in Section IV-A (SJF and HSDF) require
job runtime estimation. Instead of relying on inaccurate es-
timations provided by users, we estimate the runtime of a
newly arrived job as the mean of the runtimes of the last two
finished jobs submitted by the same user [18]. Many other
runtime estimation techniques have been explored in the past,
but this simple method has been shown to give very good, and
often even the best results [18], [19]. Similarly, we also use
traditional wait-time estimation [19].

IV. JOB SCHEDULING IN KOALA-C

In this section, we propose a scheduling model for placing
jobs across multiple sites managed by KOALA-C. Towards this
end, we adapt four common scheduling policies for single
sets of sites which service jobs irrespective their runtimes.
Furthermore, we design two new policies for multiple sets of
sites each of which is configured to service only jobs whose
runtimes are in a specific range. The latter policies are non-
trivial adaptations to our system model of the well-known
TAGS task assignment policy in distributed server systems [20].
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(a) The structure of the traditional scheduling policies with one set of sites.

(b) The structure of the TAGS-chain policy with a chain of three sites (T3 = ∞).

(c) The structure of the TAGS-sets policy with three decreasing sets of sites with
three, two, and one site, respectively (T3 = ∞).

Fig. 2: The structure of the KOALA-C scheduling policies.

A. Traditional Scheduling Policies

We consider four common scheduling policies which we
use as baselines in our experiments. All these policies assume
a system consisting of a single set of sites that are ordered in
some arbitrary way (see Figure 2a). Arriving jobs are entered
into a global queue, and periodically (every 30 seconds in
our experiments) the selected scheduling policy is invoked.
On each site, jobs run to completion without preemption of
any form. The four policies are:

1) First-Fit (FF): The FF policy uses a FCFS queue to
dispatch every job to the first site in which it fits,
i.e., that has sufficient resources to execute the job.

2) Round-Robin (RR): Similarly to FF, the RR policy
services jobs in FCFS order and assigns them in a
cyclical fashion to sites with enough resources.

3) Shortest-Job-First (SJF): The SJF policy uses job
runtime predictions to prioritize the shortest job on
the first site that has sufficient resources to run it. We
also use a variation of this policy, SJF-ideal, which
assumes perfect prior knowledge of the job runtimes.

4) Highest-SlowDown-First (HSDF): The HSDF policy is
similar to SJF except that it also uses job wait-time
prediction in order to allocate the job with the highest
estimated slowdown first.

B. TAGS-chain: Scheduling across a Chain of Sites

The TAGS-chain policy considers a system to consist of a
chain of sites each of which is associated with a job runtime
limit that indicates the maximum amount of time jobs are
allowed to run on the resources of the site (see Figure 2b).
More generally, one might for this policy assume a system
to consist of a chain of sets of sites, with runtime limits

for complete sets, as we will have in the TAGS-sets policy
(see Section IV-C). However, in this paper for TAGS-chain
we restrict such sets to single sites. The runtime limits are
increasing across the chain, and have to be set by the system
administrator. Jobs submitted to the system are first appended
to the queue of site 1, which has the lowest job runtime limit.
Within each site, jobs are served in FCFS fashion, and run until
completion or until exceeding the site’s runtime limit. When a
job reaches the runtime limit of site 1, it is killed and appended
to the queue of site 2. When it is then scheduled, it will start
from scratch again. This process continues until a job either
completes, or until it reaches the last site, where it will be
allowed to run to completion (that is, the job runtime limit of
the last site is always set to ∞).

The characteristics of the TAGS-chain policy derive from
the analytical study of the original TAGS policy [20] in a system
with distributed servers and sequential jobs. In our system
model, each site is dedicated to the jobs with a specific range of
runtimes. As shown in previous work on TAGS, short jobs will
not suffer from huge values of slowdowns due to the presence
of very large jobs. As a consequence, TAGS-chain helps in
achieving relatively uniform values of the job slowdown across
jobs with varying runtimes.

In order to further distribute the load in a large system,
we generalize the TAGS-chain policy to multiple chains of
sites managed by KOALA-C, each identical in structure to a
single chain as in Figure 2b. Then, when a job is submitted to
KOALA-C, it is immediately dispatched to one of these chains
selected either uniformly random (RND), or in round-robin
fashion (RR). We explore the ability of the chain selection
policy to extend the properties of TAGS in a single chain in
Section V. Intuitively, TAGS-chain may lead to low resource
utilization when the amounts of resources consumed by jobs
in the different runtime ranges are imbalanced.

C. TAGS-sets: Scheduling across Decreasing Sets of Sites

To alleviate the loss of resource utilization that may be
the result of using TAGS-chain, we design the policy TAGS-
sets for integrated multicluster and multicloud environments.
TAGS-sets still uses the main motivation of TAGS-chain, which
is to let short jobs have short wait times and to let long jobs
have long wait times by running each on specific subsets
of resources. Although the structure of TAGS-sets resembles
that of TAGS-chain, there are two important differences: in
TAGS-sets, the sets of sites configured by KOALA-C consist of
multiple sites, with runtime limits associated with complete
sets, and the sets of sites are decreasing, with set 1 consisting
of the complete system, and with each next set being a proper
subset of the previous set. Similarly as with TAGS-chain, jobs
upon arrival join the queue of set 1, the runtime limit increases
from one set to the next, and jobs that are preempted and killed
because they reach a runtime limit are started from scratch in
the next set of sites. Within each set, jobs are serviced using
the FF policy defined in Section IV-A. In Figure 2c, we show
the structure of TAGS-sets with three sets of sites for a system
with in total three sites. In this example, site 1 is dedicated
to short jobs (site 1), site 2 runs short and intermediate-sized
jobs, and site 3 is the only site to run long jobs.
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TABLE I: Overview of the experiments, with in bold the distinguishing features of each experiment.

Section Experiment Goal Experiment Type Used Policies Used Environment

V-B Policy configuration Simulation TAGS-chain, TAGS-sets Multicluster

V-C1 Policy comparison Simulation Traditional, TAGS-chain Multicluster

V-C2 Policy comparison Simulation Traditional, TAGS-sets Multicluster and Multicloud

V-D Real-world vs. Simulation Real-world and Simulation Traditional, TAGS-sets Multicluster and Multicloud

TABLE II: Summary of the characteristics of the five PWA
traces (top) and three GWA traces (bottom). Count (%) indi-
cates the percentages of jobs after eliminating those larger than
32 nodes from the original trace. The Job Runtime statistics
are only for the remaining jobs.

Trace
Jobs Job Runtime (minutes)

(Count, %) mean Q1 median Q3 99th

KTH-SP2 27K (96%) 149 1 14 164 1, 323

CTC-SP2 74K (94%) 184 2 16 223 1, 081

SDSC-BLUE 175K (76%) 46 1 2 14 961

SDSC-SP2 63K (94%) 96 1 8 42 1, 068

DAS2-fs3 65K (99%) 12 0 1 1 92

AuverGrid 50K (100%) 218 1 17 123 1, 645

LCG 50K (100%) 113 2 4 27 2, 901

NorduGrid 50K (100%) 4, 315 32 1, 403 7, 720 17, 836

There is one subtle issue in scheduling jobs in TAGS-sets.
One may question the benefit of killing a job in a certain set
that already runs on a site that is also part of the next set
(e.g., an intermediate-sized job running on site 2 in set 1),
and later restarting it on that same site as part of the next
set (e.g., restarting the job on site 2 in set 2). The reason is
that whenever the KOALA-C scheduler is invoked, it scans the
queues of the sets of sites for jobs to be scheduled in increasing
order, starting at the queue of set 1. Thus, priority is given to
shorter jobs over longer jobs. In the given example, after the
job is killed on site 2 in set 1, first jobs in the queue of set 1
get a chance to be scheduled before the very same job will be
rescheduled and may restart on site 2.

We conduct an extensive experimental analysis of TAGS-
sets in Section V. Intuitively, TAGS-sets is very useful for a
system that requires a differentiation between two job classes,
i.e., short and long jobs. For this situation, TAGS-sets may
improve the overall utilization when there are enough small
jobs (because the small jobs can be assigned to any sites)
without making small jobs wait unnecessarily for long jobs
(because at least some subset of sites is exclusively used by
short jobs).

V. EXPERIMENTAL RESULTS

We perform both simulations and real-world experiments
to analyze the architecture and the policies presented in this
work. In this section, we first describe the experimental setup,
then present the simulation results, and finally the real-world
results. In Table I, we provide an overview of our experiments
with their goals and their distinguishing features.

A. Experimental Setup

We use eight real-world traces of scientific workloads, five
from the Parallel Workloads Archive (PWA1) and three from

1http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

the Grid Workloads Archive (GWA) [21]. From the PWA
traces, we use the complete trace, while from the GWA traces,
we use the first 50,000 jobs. Given the system configurations
we use in our experiments, we limit the size of jobs to 32
nodes and omit larger jobs from the traces. We summarize
the properties of these traces in Table II. The numbers in
parentheses are the percentages of jobs remaining from the
original traces after removing the jobs of size exceeding 32.
For each trace, we show the average job runtime along with
the job runtime at different percentiles.

We simulate two environments, a multicluster-only envi-
ronment for evaluating TAGS-chain and an integrated multi-
cluster and multicloud environment for evaluating TAGS-sets.
The two setups are summarized as follows:

1) Multicluster Environment: We set up different num-
bers (1 to 10) of identical chains of sites, with two
sites of 32 nodes each, and the same runtime limit
for short jobs. In this environment, we evaluate six
job allocation policies: FF, RR, SJF, SJF-ideal, HSDF,
and TAGS-chain. We use the RND and RR policies
as dispatching policies across the different chains of
sites.

2) Multicluster and Multicloud Environment: We config-
ure five sites: three cluster sites, a private cloud site,
and a public cloud site. Each cluster site has 32 nodes.
The private cloud site has up to 64 VMs and there are
always at least 8 VMs running on it. The public cloud
has up to 128 VMs and no VMs are maintained to
perform quick service. Cost is only charged for public
cloud usage, using the same pricing policy as Amazon
EC2, which is $0.065/VM-hour. In this environment,
we evaluate the same job allocation policies as in
the multicluster environment, but with TAGS-chain
replaced by TAGS-sets.

In the real-world experiment with KOALA-C, we use two
cluster sites (called fs1 and fs2) of the DAS-4 system, each
configured with 32 nodes, an OpenNebula-based private cloud
of DAS-4 with up to 32 VMs, and Amazon EC2 as public
cloud with up to 64 VMs. The workload we use here is a
part of the CTC-SP2 workload of approximately 12 hours that
imposes an average utilization of 70% on the system computed
using the maximum cloud sizes. In this case we evaluate three
policies: FF, SJF, and TAGS-sets. For the latter policy, set 1 of
sites for short jobs consists of all four sites, and set 2 for short
and long jobs consists of three sites, omitting fs1. The runtime
limit of short jobs is set to 10 minutes.

The metrics we use are the average job slowdown, the
average job wait time, and total cost of using the public cloud.
In the real-world experiment, we also measure the makespan
and the utilization.
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Fig. 3: TAGS-chain: The average job slowdown and the average
job wait time vs. the runtime limit for short jobs for different
numbers of chains of sites (a,b) and for four chains of sites
(c,d), each having two sites, for the RR and RND policies for
dispatching jobs across chains of sites. Logarithmic scale on
vertical axes.
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Fig. 4: TAGS-sets: The average job slowdown and the total cost
vs. the runtime limit for short jobs for CTC-SP2, SDSC-BLUE,
AuverGrid, and NorduGrid. Logarithmic scale on vertical axes.

B. Configuration of TAGS-chain and TAGS-sets

We first investigate how to configure the TAGS-chain policy
when there are only two classes of jobs, short and long, i.e.,
to what value to set the runtime limit of short jobs in order
to achieve the lowest average job slowdown. To this end, we

simulate the scenarios of the multicluster environment detailed
above, with the runtime limit for short jobs enforced on one
site and the other site having no such limit.

In Figure 3, we show the results of the PWA trace KTH-
SP2. From Figure 3a, we can see that using RR job dispatching,
the lowest average job slowdown is achieved when we set the
runtime limit for short jobs to 25 minutes. RND shows a similar
pattern, but with more variance. However, for all the traces
we evaluated, there is no common runtime limit to achieve the
lowest slowdown in all cases, and in Table III, we list the setup
for each trace. We also show the average wait times of short
jobs, of long jobs, and of all jobs with four chains of sites in
Figures 3c and 3d, and we find that TAGS-chain indeed gives
short jobs shorter wait times in order to reduce the average
job slowdown.

Similar to TAGS-chain, we investigate the configuration for
TAGS-sets. We let short jobs use all five sites and we let
long jobs use three of them (one cluster and both clouds).
In Figure 4, we show the average job slowdown and the total
cost of using the public cloud versus the runtime limit of short
jobs. We find that for TAGS-sets, changing the runtime limit
for short jobs has little impact on the average slowdown, but
the total cost may vary significantly. But overall, we find that
in most cases, a runtime limit of 40 minutes is suitable for
most traces, and we use this value to evaluate all policies in
the multicluster and multicloud environment.

C. Results for Trace-Based Simulations

1) Multicluster Environment: In Figure 5, we show the
average job slowdown and the average job wait time of all poli-
cies for the four traces CTC-SP2, SDSC-BLUE, AuverGrid,
and NorduGrid versus the number of cluster sites. We find
that RR almost always has the highest job slowdown, and that
in most cases, heuristic policies such as SJF and HSDF are
better than the policies with no prior knowledge such as FF

and RR. TAGS-chain outperforms the other policies when the
system is small, and in the best case in NorduGrid, it lowers the
slowdown more than 25 times against the other policies when
the system size is small. The reason is that in NorduGrid SJF

and HSDF perform poorly because they extremely overestimate
(underestimate) the runtimes of short (long) jobs, while TAGS-
chain yields wait times that are better in proportion with job
runtimes.

2) Multicluster and Multicloud Environment: In Figure 6,
we show the average job slowdown and the total cost of all
policies for all traces. We find that RR is by far the worst policy
in terms of performance, followed by FF. Simple heuristic

TABLE III: TAGS-chain: The optimal runtime limit of short
jobs for all traces (rounded to multiples of 5 minutes).

Trace Limit [min] Short Jobs

KTH-SP2 25 55%

CTC-SP2 125 69%

SDSC-BLUE 55 87%

SDSC-SP2 40 75%

DAS2-FS3 25 98%

AuverGrid 60 67%

LCG 20 69%

NorduGrid 120 32%
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Fig. 5: The average job slowdown of all policies for CTC-SP2,
SDSC-BLUE, AuverGrid, and NorduGrid. Logarithmic scale
on vertical axes.

policies such as SJF and HSDF never perform worse than
FF and RR. However, in most cases, TAGS-sets has the best
performance except for SJF-ideal, and noticeably, in LCG and
NorduGrid, TAGS-sets improves the slowdown against SJF over
10 times and more than 25 times, respectively. From Figure 6b,
we find that TAGS-sets costs more than most of the other
policies, by a factor ranging from 1.3 to 4.2 times, but if
we take into account the significant performance improve-
ment TAGS-sets achieves, the cost increment is acceptable.
Therefore, we conclude that TAGS-sets can achieve a good
performance-cost trade-off in an integrated multicluster and
multicloud environment.

D. Results for Real-World Experiments

In this section we present the experiments performed
with KOALA-C in the integrated multicluster and multicloud
environment as explained in Section V-A. In Figure 7, we
show the average overall job slowdown and job wait time
of the three policies FF, SJF, and TAGS-sets with both real-
world experiments using KOALA-C and simulations, and the
same metrics for short and long jobs separately (and again all
jobs together) for the real experiments only. The error bars
are calculated using the standard error of the mean defined as
σ/

√
n, where σ is the standard deviation and n is the sample

size. In all of our experiments, KOALA-C completes all jobs
correctly, thus, we conclude that KOALA-C operates correctly
in a multicluster and multicloud environment.

The results of the real experiments and the simulations in
Figure 7 are remarkably close. We find that TAGS-sets has the
lowest job slowdown compared to FF and SJF, but the highest
average job wait time. Figures 7b and 7d show the reason
for this phenomenon: TAGS-sets succeeds in giving short jobs
short wait times and long jobs long wait times, exactly what
it was designed for!
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Fig. 6: The average job slowdown (a) and the total cost (b) for
all policies for all traces. Logarithmic scale on vertical axes.
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Fig. 7: The average job slowdown for all jobs (a) and per job
type (b) in the real experiments with KOALA-C (a,b) and in the
simulations (a), and the average wait time for all jobs (c) and
per job type (d) in the real experiments with KOALA-C (c,d)
and in the simulations (d). The fractions of short and long jobs
are shown in parentheses.

In Figure 8 we show, the cost, the makespan, and the
utilization of the three policies. We find that similar to
the results in the simulations, TAGS-sets has a higher cost.
However, this is because we let long jobs use the public
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Fig. 8: Real experiments with KOALA-C: The cost, the
makespan, and the utilization of FF, SJF, and TAGS-sets.

cloud, which can eventually incur higher cost. Thus, with a
different configuration, the result can be different. We also
find that the makespan of TAGS-sets is higher than FF and SJF,
and its overall utilization is lower. This is also caused by its
preemptive nature, and moreover, long jobs have to race for
limited resources (three sites) while privileged short jobs can
use all resources.

In Figure 9, we show the fractions of jobs completed on
each of the four sites, which for FF and SJF are ordered as fs1,
fs2, ONE, and Amazon EC2, used in the real experiments. FF

and SJF have similars pattern in site usage, and they both use
the cluster site fs1 the most. However, TAGS-sets balances the
load much better across the cluster sites fs1 and fs2. SJF is
basically FF with a preference for jobs with shorter runtimes
(not necessarily below the runtime limit of TAGS-sets), and
this is reflected in a somewhat higher completion rate on fs1
and a much higher rate on fs2. TAGS-sets schedules short jobs
(runtime 10 minutes) across all four sites, but as on fs1 there
are no competing long jobs, the majority of short jobs (41%,
out of a total of 46%) are completed on fs1; the decreasing
number of completions on fs1, fs2, ONE, and EC2, reflects
well TAGS-sets’s preference in using first local, then free
private cloud, then paid public cloud resources, respectively.

VI. RELATED WORK

In this section, we summarize the related work from two
aspects: the systems and approaches for cluster or/and cloud
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Fig. 9: Real experiments with KOALA-C: The fractions of jobs
completed on each site with FF, SJF, and TAGS-sets (fs1 and
fs2 are two DAS-4 cluster sites, ONE is the OpenNebula cloud
of DAS-4, and EC2 is Amazon EC2).

environments and the policies of job allocation and resources
provisioning. Our work differs fundamentally from all related
work, through our novel architecture and our new subsystem-
aware policies. Moreover, we conduct both real-world and
simulated (long-term) experiments, which only a few of the
related studies do.

Much related work in this field reveals different approaches
for cluster or/and cloud environments. An early work of
Marshall et al. [1] presents a way of using IaaS clouds as elas-
tic sites to expand the capacity of existing clusters. They use a
similar virtual cluster approach on Amazon EC2 with Torque
as the resource manager. Mesos [22] provides a platform which
shares clusters between various application frameworks, such
as MPI and Hadoop. Its scheduling mechanism is based on
resource offers and fairly assigns resources to each framework.
The framework can either accept or reject the resources based
on their own policies. The resource isolation of Mesos gives
high resource utilization and efficiency. Wrangler [2] is an
automated deployment system for IaaS clouds. The system
aims to solve the problem that the VMs on IaaS clouds do
not provide any resource management functionality once that
are provisioned. Wrangler presents a way to automatically
provisioning virtual clusters with Condor as the underlying
resource manager for users. Kim et al. [23] present a system
that explores the efficiency of scientific workflow on hybrid
environments with grid and cloud.

Several previous studies [3], [4], [7] show various ap-
proaches in policy design and performance evaluation on IaaS
clouds. Chard et al. [24] present several economic resource
allocation strategies for grid and cloud systems. Deng et
al. [25] introduce a portfolio scheduler for IaaS clouds and
evaluate policies through simulation.

VII. CONCLUSION

Extending existing (multi-)cluster resource managers with
the ability to manage resources provisioned from IaaS clouds
would be beneficial for various companies, research labs, and
even individuals with high computational demands. Towards
this goal, in this work we have designed, implemented, de-
ployed, and evaluated KOALA-C, a task scheduler for integrated
multicluster and multicloud environments.

KOALA-C is designed to support in a uniform way re-
sources from clusters and clouds, which it can integrate into
virtual clusters. The KOALA-C architecture includes a com-
ponent for managing sets of sites and a scheduling policy
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framework. We have equipped KOALA-C with a library of
traditional scheduling policies for single-set system structures,
and with two novel scheduling policies for multi-set structures
with runtime limits aiming at uniform job slowdowns. Last,
we have shown through realistic simulations and real-world
experiments that the two new policies can achieve significant
improvements over the other policies we have evaluated with
respect to job slowdown and resource utilization.

For the future, we plan to extend the set of policies
provided with KOALA-C with more job dispatching methods,
and to adapt the concept of Portfolio Scheduling [25] to
multicluster-and-multicloud evironments.
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