
Towards an Optimized Big Data Processing System
Bogdan Ghiţ

Delft University of Technology
b.i.ghit@tudelft.nl

Alexandru Iosup
Delft University of Technology

Supervisor

Dick Epema
Delft University of Technology

Supervisor

Abstract—Scalable by design to very large computing systems
such as grids and clouds, MapReduce is currently a major big
data processing paradigm. Nevertheless, existing performance
models for MapReduce only comply with specific workloads that
process a small fraction of the entire data set, thus failing to
assess the capabilities of the MapReduce paradigm under heavy
workloads that process exponentially increasing data volumes.
The goal of my PhD is to build and analyze a scalable and
dynamic big data processing system, including storage (dis-
tributed file system), execution engine (MapReduce), and query
language (Pig). My contributions for the first two years of PhD
research are the following: 1) the design and implementation
of a resource management system part of a MapReduce-based
processing system for deploying and resizing MapReduce clusters
over multicluster systems, 2) the design and implementation of a
benchmarking tool for the MapReduce processing system, and 3)
the evaluation and modeling of MapReduce using workloads with
very large data sets. Furthermore, based on the first two years
research, we will optimize the MapReduce system to efficiently
process terabytes of data.

I. PROBLEM STATEMENT

To perform fast and inexpensive big data analytics, re-
searchers use a processing system represented by a stack of
frameworks for data storage (distributed file system, such as
Hadoop Distributed File System [1]), data processing (execu-
tion engine, such as MapReduce [2]), and data manipulation
(query language, such as Pig [3]) deployed over a large
distributed system (such as clusters, grids, and clouds). In
the context of the data explosion phenomenon [4], existing
performance models for MapReduce are applicable for specific
production workloads [5], [6], [7], [8], but are yet to reveal
the real capabilities of the processing system under heavy
workloads that process tens of terabytes of data. Therefore,
the goal of my PhD research is to optimize the MapReduce
system for processing terabytes of data.

The data is permanently growing in three directions with
respect to volume, velocity, and variety. While both LinkedIn
and Facebook are processing PB of user generated data,
the data size is expected to massively increase over the
next decade, reaching unprecedented scales. New York Times
processed a 4 TB data set of raw images into 11 million PDFs
in about 24 hours; the time to decode the human genome has
been reduced from 10 years to 7 days. Computer science (e.g.,
applications, web, documents, etc.), physics (e.g., particle
accelerators), biology (e.g., genome sequencers), or astronomy
(e.g., powerful microscopes) generate complex data.

Firstly, we extend the KOALA grid scheduler architecture
with support for scheduling, deploying, and dynamically resiz-
ing a big data processing system [9]. On one hand, users may

require isolated environments to develop their applications and
to process their data, which calls for multiple deployments of
MapReduce clusters (MR clusters) within the same physical
infrastructure. On the other hand, when the physical clusters
are not large enough [10] to efficiently analyze large amounts
of data, the MapReduce processing system needs to be scaled
across multiple clusters. During my PhD research we aim to
improve the scalability and performance of the MapReduce
processing system by dynamically changing its structure,
using machines leased from multiple infrastructures. We aim
to incorporate knowledge and prediction based modules in
KOALA and enforce scheduling and provisioning decisions
compliant with the workload characteristics extracted from
previous executions.

Secondly, we evaluate and model the performance of the
processing system using different infrastructure configurations
(e.g. single cluster, or multicluster system). Given a heavy
workload that processes up to tens of TB, the physical re-
sources of the system can easily become saturated: memory,
network bandwidth, or disk. We aim to develop a bench-
marking tool representative for such heavy workloads and
test the boundaries of the processing system under different
infrastructure configurations. We design a multi-level approach
for building and analyzing a MapReduce performance model,
from the infrastructure layer up to the middleware and ap-
plication layers. For the future, we optimize the MapReduce
processing system based on the first two years research.

Thirdly, to move from theory to practice and backwards,
we validate our mechanisms and methods by deploying the
processing system and conducting experimental research on
a real multicluster system such as the DAS-41.

Furthermore, we understand that MapReduce represents
only a part of a larger domain with many other powerful
processing frameworks such as Dryad [11], Nephele, Pact [12],
or Hive [13]. Thus, the techniques and mechanisms we design
must be applicable to other frameworks as well, and eventually
to paradigms beyond the current processing systems. We plan
to address this issue in the last year of my PhD.

We identify two main implications of our work related to
the CCGrid community. From the architectural perspective, we
design a new mechanism for dynamic resizing MR clusters
using heuristic based provisioning policies. In addition, we
improve the scalability and elasticity of the MapReduce system
in order to process over 10 TB of data.

1www.cs.vu.nl/das4/



II. THE BIG DATA PROCESSING SYSTEM

The big data processing system in Figure 1 has two main
components: the KOALA Resource Manager for grids and
clouds, and the MapReduce runner (MR-Runner) for Hadoop
and Pig deployments. We now describe each, in turn.

A. The Koala Resource Manager

The KOALA grid scheduler was originally designed for
multicluster systems such as the DAS-4 with the goal of
designing, implementing, and analyzing scheduling strategies
for various application types.

At the core of the system, the scheduler is responsible for
scheduling jobs submitted by users by placing and executing
them on suitable cluster sites according to its scheduling
policies. Jobs are submitted to KOALA through runners, spe-
cialized in specific application types (e.g., cycle scavenging
jobs [14], workflows [15], and malleable applications [16]).
To monitor the status of the resources, KOALA uses a network
information service. KOALA interfaces with the local resource
managers of the clusters in the multicluster system, but it does
not fully control the grid resources, as users may submit their
jobs directly through the local resource managers deployed on
each physical cluster.

The contribution of my PhD research for KOALA is the
design and implementation of a runner for dynamic MapRe-
duce clusters (MR-Runner) [9], which we further describe
in the remainder of the section. Furthermore, we released a
new version of KOALA which is now available on the DAS-4
multicluster system 2.

As future work, we are planning to improve KOALA’s
scheduling policies by adapting its decisions based on the
characteristics extracted from the workload’s past executions.
Therefore, novel workload analysis methods, prediction mod-
els and online scheduling mechanisms represent the contribu-
tions my research aims to achieve.

B. The MapReduce Runner

We design and implement a resource management system
to facilitate the on-demand isolated deployment of dynamic
MapReduce clusters in multicluster systems. An MR cluster
(e.g., Hadoop) relies on a two-layer architecture: a compute
framework to facilitate an execution environment for MapRe-
duce applications, and a storage layer (distributed file system)
that manages in a reliable and efficient manner large data
volumes. Both layers are distributed across all nodes of an
MR cluster, such that each node may execute tasks and also
store data. The MR cluster is coupled with a high-level query
language such as Pig, which provides an easy way to express
data analysis programs.

From the infrastructure perspective, the MR-Runner is able
to deploy multiple MR clusters within a single physical cluster
with the desired isolation properties, but also to span a single
MR cluster across a multicluster system.

2http://www.pds.ewi.tudelft.nl/koala

Deploying multiple MapReduce clusters enables four types
of isolation, with respect to performance, to data management,
to fault tolerance, and to version. To efficiently manage the un-
derlying physical resources, we propose several provisioning
policies for dynamically resizing MapReduce clusters, and we
evaluate the performance of our system through experiments
on a real multicluster system [9] (DAS-4).

Storage Layer
HDFS

Execution Engine
 MapReduce

Query Language
Pig

Resource Manager
KOALA

Fig. 1. The Koala-based Big Data Processing System

The contribution of my PhD research is the design and
implementation of a novel hybrid architecture for dynamic MR
clusters (which may grow or shrink) with core and transient
nodes. While the former are used both for computations
and storage, the latter are used only for computations. The
architecture favors fast reconfiguration of the MR cluster by
adding or removing transient nodes, while the structure of
the data remains unchanged. Thus, we bypass the burden of
redistributing the data.

To take full advantage of the nodes when the MR cluster
grows, the storage layer needs to be adjusted as well. While we
can easily add more core nodes, removing them from an MR
cluster arises issues such as data availability and integrity. For
the future, we are going to improve the resizing mechanism
to support grow-shrink operations at the storage layer (e.g.,
HDFS) while the data availability and integrity are preserved.

III. THE PERFORMANCE MODEL

In this section we describe the workloads we use in our
evaluation and modeling of the big data processing system
and we present our approach for building and analyzing a
MapReduce performance model compliant with the massively
increasing data volumes.

A. The Benchmark Suite

Among the challenges of benchmarking cloud-based sys-
tems identified in [17], we have emphasized the importance
of the workload suite and the metrics used to test and quantify
the performance of the system.

We split the MapReduce processing system benchmarking
into two phases: the workload execution, followed by the
result analysis and interpretation. We will design a workload
suite for big data benchmarking that covers a broad range of
applications and data sets from the academia, industry, and
scientific world:



• Real-world applications. The most common MapReduce
applications implement algorithms for text processing
(e.g., Wordcount, Sort, TeraSort), web searching (e.g.,
Nutch indexing, PageRank), or machine learning (e.g., K-
means clustering, Bayesian classification). HiBench [18]
is a benchmarking tool for MapReduce that incorporates
such workloads with randomly generated data sets.

• Trace-based workloads. Although we are not able to
reproduce exactly the execution of the original applica-
tion, the synthetic workloads are not less valuable than
the real-world applications. As such workloads reflect
the representative set of use cases for MapReduce, we
generate them through analysis and modeling of traces
gathered from production clusters.

• BTWorld use case. The P2P team in our PDS group 3

maintains a data set of BitTorrent logs collected over a
period of three years. The data set reached 14 TB which
we aim to statistically analyze using the MapReduce pro-
cessing system. Towards this goal, we have implemented
a set of Pig queries which mine through the entire data
set to determine the seeder-leecher ratio per tracker, the
most popular hashes and swarms, the number of sessions
per tracker, and other interesting information about the
BitTorrent system.

Analyzing the results obtained through benchmarking relies
on a well-defined set of metrics that quantify the performance
of the system. Based on our collaboration with the SPEC
Research Group 4, as part of my PhD research, we are going
to explore new metrics such as elasticity of the processing
system (dynamic MR clusters), performance isolation of
the workloads (multiple MR clusters), velocity of the data
processing (in future), or adaptivity to the data explosion
(in future). The benchmarking tool we plan to design and
implement not only for the performance evaluation of the big
data processing system, but also in order to enrich KOALA
with knowledge about the workloads, will be certified by the
SPEC Research Group.

B. The MapReduce Modeling

To build and analyze a MapReduce performance model we
take a multi-level approach, from the physical system up to
the middleware and application layers:

• Infrastructure layer. The structure of the distributed
system on top of which the big data processing system
is deployed impacts the performance. The MR-Runner
enables MapReduce clusters on demand in a multicluster
environment. Thus, there are three deployment scenarios
involved in our performance evaluation: single MR clus-
ter over dedicated physical cluster, multiple MR clusters
sharing the same physical cluster, and single MR cluster
over multiple physical clusters. We aim to develop re-
source management techniques for scalable provisioning

3http://www.pds.ewi.tudelft.nl/
4http://research.spec.org/

of the processing system over a large multicluster system.

• Middleware layer. The big data processing system is
controlled by a rich set of parameters with respect
to memory, storage, and network. Finding the optimal
configuration of the processing system given a certain
structure of the distributed system (infrastructure layer)
represents an important step towards a reliable perfor-
mance model for MapReduce.

• Application layer. The diverse workloads should reveal
both the strengths and the weaknesses of the big data
processing system. With heavy workloads processing
very large data sets, physical resources of the system
can be easily saturated. Therefore, understanding to what
extent the MapReduce processing system is suitable for
certain types of workloads is a prerequisite in building a
reliable performance model.

Finally, to evaluate the performance of the big data process-
ing system we will apply analytical (e.g., empirical evaluation)
and statistical methods (e.g., maximum likelihood estimation
method - MLE [19]).

IV. EXPERIMENTAL RESEARCH

My PhD research is of high importance in the CCGrid
community, as we conduct experiments on a real multicluster
system (DAS-4) and we apply my research work to solve real-
world applications.

The physical infrastructure is a wide-area computer system
dedicated to research in parallel and distributed computing.
The Distributed ASCI Supercomputer (DAS-4), currently in
its fourth generation, consists of six clusters distributed in
institutes and organizations across the Netherlands.

The performance evaluation of the MR-Runner [9] shows
that the CPU-bound applications scale on transient nodes as
well as on core nodes, while the IO-bound applications suffer
a high performance degradation when the number of transient
nodes increases. The workloads include two representative
MapReduce applications (Sort and WordCount) and process
from 1 GB up to 100 GB randomly generated data.

The BTWorld project aims to process a 14 TB data set of
BitTorrent logs gathered by the P2P research group at TU
Delft over a period of three years. We aim to use the Koala-
based processing system on the DAS-4 infrastructure in order
to analyze the data set and extract statistics about the trackers,
hashes, seeders and leechers etc.

V. TIMELINE

The timeline of my PhD research for the first two years
includes the following four points (Table I):

1) Koala Big Data System. During the first year of my
PhD research I designed and implemented the MR-
Runner which enables scheduling MapReduce clusters
with KOALA. The MR clusters are enriched with dy-
namic resizing capabilities. Increasing the elasticity of
the processing system and developing more provisioning
policies represent further goals of my work.



TABLE I
MY PHD RESEARCH TIMELINE, 2011-2013

Phase Duration Completed Future Work
Koala Big Data System 1 year Dynamic MapReduce clusters Elastic HDFS, more policies

Benchmarking Tool 3 months HiBench applications Synthetic workloads and BTWorld
BTWorld Use Case 3 months 100 GB data processed Go up to 10 TB

Performance Evaluation 6 months Single MR clusters Multiple MR clusters

2) Benchmarking Tool. For the initial performance evalua-
tion we have used applications provided by the HiBench
tool. Furthermore, we want to develop our own bench-
marking tool based on real-world applications, synthetic
workloads and the BTWorld queries.

3) BTWorld Use Case. We have used the MR-Runner to
process 100 GB of the BTWorld data set and we aim to
scale up to 14 TB of data.

4) Performance Evaluation. The goal of my second PhD
year is to evaluate the performance of the Koala-based
big data processing system, with various workloads and
different structures and configurations of the system.

ACKNOWLEDGMENT

This publication was supported by the Dutch national pro-
gram COMMIT and STW/NWO Veni grant 11881. We would
like to thank Mihai Capotă, Tim Hegeman, and Lipu Fei.

REFERENCES

[1] T. White, Hadoop: The Definitive Guide. Yahoo Press,
2010.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data
Processing on Large Clusters,” Comm. of the ACM,
Vol. 51, no. 1, pp. 107–113, 2008.

[3] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins, “Pig latin: A Not-So-Foreign Language for
Data Processing,” Proc. of the 2008 SIGMOD Int’l Conf.
on Management of Data. ACM, 2008, pp. 1099–1110.

[4] http://www.infoworld.com/d/data-explosion/
big-data-get-even-bigger-in-2011-064.

[5] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The
Case for Evaluating MapReduce Performance Using
Workload Suites,” 19th Int’l Symp. on Modeling, Anal-
ysis & Simulation of Computer and Telecommunication
Systems (MASCOTS). IEEE, 2011, pp. 390–399.

[6] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan,
“An Analysis of Traces from a Production Mapreduce
Cluster,” 10th Int’l Conf. on Cluster, Cloud and Grid
Computing (CCGrid). IEEE, 2010, pp. 94–103.

[7] D. Jiang, B. Ooi, L. Shi, and S. Wu, “The Performance
of MapReduce: An In-depth Study,” Proc. of the VLDB
Endowment, Vol. 3, no. 1-2, pp. 472–483, 2010.

[8] Y. Chen, S. Alspaugh, and R. Katz, “Interactive Analyt-
ical Processing in Big Data Systems: A Cross-Industry
Study of MapReduce Workloads,” Proc. of the VLDB
Endowment, Vol. 5, no. 12, pp. 1802–1813, 2012.

[9] B. Ghit, N. Yigitbasi, and D. Epema, “Resource Manage-
ment for Dynamic MapReduce Clusters in Multicluster

Systems,” Proc. of the 5th Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS) co-
located with Supercomputing (SC). IEEE.

[10] Y. Kee, H. Casanova, and A. Chien, “Realistic modeling
and svnthesis of resources for computational grids,”
Proceedings of the 2004 ACM/IEEE conference on Su-
percomputing. IEEE Computer Society, 2004, p. 54.

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly, “Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks,” SIGOPS Operating Systems
Review, Vol. 41, no. 3, pp. 59–72, 2007.

[12] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke, “Nephele/Pacts: A Programming Model and
Execution Framework for Web-Scale Analytical Process-
ing,” Proc. of the 1st Symp. on Cloud computing. ACM,
2010, pp. 119–130.

[13] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy, “Hive: A
Warehousing Solution Over a Map-Reduce Framework,”
Proc. of the VLDB Endowment, Vol. 2, no. 2, pp. 1626–
1629, 2009.

[14] O. Sonmez, B. Grundeken, H. Mohamed, A. Iosup, and
D. Epema, “Scheduling Strategies for Cycle Scavenging
in Multicluster Grid Systems,” 9th Int’l. Symp. on Cluster
Computing and the Grid (CCGrid), pp. 12–19, 2009.

[15] O. Sonmez, N. Yigitbasi, S. Abrishami, A. Iosup, and
D. Epema, “Performance Analysis of Dynamic Workflow
Scheduling in Multicluster Grids,” 19th Int’l. Symp. on
High-Performance Distributed Computing (HPDC), pp.
49–60, 2010.

[16] J. Buisson, O. Sonmez, H. Mohamed, W. Lammers,
and D. Epema, “Scheduling Malleable Applications in
Multicluster Systems,” 9th Int’l. Conference on Cluster
Computing, pp. 372–381, 2007.

[17] A. Iosup, R. Prodan, and D. Epema, “Iaas Cloud
Benchmarking: Approaches, Challenges, and Experi-
ence,” Proc. of the Int’l Conf. on High Performance
Networking and Computing (SC), MTAGS. IEEE/ACM,
pp. 1–8.

[18] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang,
“The Hibench Benchmark Suite: Characterization of the
MapReduce-based Data Analysis,” 26th Int’l Conf. on
Data Engineering Workshops (ICDEW), pp. 41–51, 2010.

[19] J. Aldrich, “R.A. Fisher and the Making of Maxi-
mum Likelihood 1912-1922,” Statistical Science, Vol. 12,
no. 3, pp. 162–176, 1997.


