
SparkFuzz: Searching Correctness Regressions in
ModernQuery Engines

Bogdan Ghit,

bogdan.ghit@databricks.com

Databricks Inc.

Nicolas Poggi

nicolas.poggi@databricks.com

Databricks Inc.

Josh Rosen

joshrosen@databricks.com

Databricks Inc.

Reynold Xin

rxin@databricks.com

Databricks Inc.

Peter Boncz

peter.boncz@cwi.nl

Centrum Wiskunde & Informatica

ABSTRACT
With more than 1200 contributors, Apache Spark is one of the

most actively developed open source projects. At this scale and

pace of development, mistakes are bound to happen. In this paper

we present SparkFuzz, a toolkit we developed at Databricks for

uncovering correctness errors in the Spark SQL engine. To guard

the system against correctness errors, SparkFuzz takes a fuzzing

approach to testing by generating random data and queries. Spark-

Fuzz executes the generated queries on a reference database system

such as PostgreSQL which is then used as a test oracle to verify

the results returned by Spark SQL. We explain the approach we

take to data and query generation and we analyze the coverage of

SparkFuzz. We show that SparkFuzz achieves its current maximum

coverage relatively fast by generating a small number of queries.

ACM Reference Format:
Bogdan Ghit, , Nicolas Poggi, Josh Rosen, Reynold Xin, and Peter Boncz. 2020.

SparkFuzz: Searching Correctness Regressions in Modern Query Engines.

InWorkshop on Testing Database Systems (DBTest’20), June 19, 2020, Portland,
OR, USA.ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3395032.

3395327

1 INTRODUCTION
Early data analytics frameworks such as MapReduce enabled users

to simplify the execution of their big data workloads by means of

a powerful, but low-level procedural programming interface. To

cope with this limitation, systems such as Hive [24], Impala [19],

and Spark SQL [13] expose relational interfaces to big data applica-

tions, thus providing richer automatic optimizations. As a result,

the design of mechanisms for improving the performance of data

analytics systems is an active research area both in academia and

industry [15, 16, 25]. With an increasingly complex architecture,

such systems are difficult to test with good coverage in practice.

Developers are at risk to incorporate bugs, which may not only

negatively impact the system performance, but may also alter the

correctness of the results. In this paper we present the design and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DBTest’20, June 19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8001-0/20/06. . . $15.00

https://doi.org/10.1145/3395032.3395327

Figure 1: The distribution of code contributions in the
Apache Spark open source project in the trailing year.

implementation of SparkFuzz, a toolkit for automatically generating

SQL test cases which consist of random data and queries.

With powerful processing features and simple programming in-

terface catalyzing its wide adoption, Spark has recently become the

de facto framework for big data analytics [21]. Figure 1 shows that

the Spark open source code base changes at a pace of tens of com-

mits per day and so, mistakes are bound to happen. To guard the

framework against errors, developers add unit tests which often re-

sults in a significant engineering effort. Spark has roughly the same

amount of source and testing code. The effectiveness of such tests

is however relatively low because they are restricted to specific op-

erations on fixed inputs which cannot cover all possible code paths.

Furthermore, data analytics frameworks are also prone to relatively

high variability when the input dataset changes [17]. Therefore,

standard testing techniques fail to capture data-dependent runtime

interactions in these frameworks.

Catalyst, the Spark query optimizer, employs pattern-matching

to express composable rules in a Turing-complete language, while

offering a general framework for transforming trees. Catalyst mod-

ifes the user queries through tree transformations which are called

rules. Such rules are grouped into multiple batches which are ex-

ecuted until the query plan reaches a fixed point – the tree stops

changing after applying the same set of rules. Combining the sup-

ported set of rules in different ways typically diversifies the gener-

ated code paths and uncover regressions that may remain hidden

otherwise. Testing all possible combinations of rules is however a

daunting task for developers, and so the existing testing framework

in Spark only includes tests with all implemented rules enabled.

Even worse, data analytics frameworks are notoriously difficult

to setup because they expose many configuration parameters which

add an exponentially growing number of code paths. As a result,

the typical testing matrix when developing a new feature suddenly

becomes a multi-dimensional testing space. Unlike other data pro-

cessing frameworks, Spark also exposes an extensive API with more

than 200 SQL operators. In order to address these challenges we

https://doi.org/10.1145/3395032.3395327
https://doi.org/10.1145/3395032.3395327
https://doi.org/10.1145/3395032.3395327

DBTest’20, June 19, 2020, Portland, OR, USA Bogdan Ghit, , Nicolas Poggi, Josh Rosen, Reynold Xin, and Peter Boncz

want to employ fuzzing which is a well-known technique for im-

proving testing coverage in software systems. With fuzzing we are

able to (re-)generate multiple queries and input datasets of different

sizes. In contrast, unit tests only support a few queries running on

a relatively small dataset.

We propose SparkFuzz, an automatic test case generator for the

Spark SQL engine. SparkFuzz provides correctness guarantees by

checking the results of a test case against the PostgreSQL refer-

ence database implementation [5]. At the core, SparkFuzz consists

of two complementary mechanisms. Firstly, it enables automatic

generation of columnar-oriented datasets by randomly sampling

across the supported data types to generate table schemas and then

filling those tables with random data. Secondly, SparkFuzz employs

a recursive SQL model to construct a query profile with features

consisting of operators and clauses. All features are annotated with

weights used to calculate their probability of being sampled during

the test case generation. SparkFuzz is an external tool that con-

nects to a running Spark instance to load the generated data and

execute random queries. Finally, SparkFuzz can also randomize the

configuration space of a Spark deployment by randomly toggling

optimization rules and sampling over valid parameter ranges.

In this paper we make the following contributions:

• We design SparkFuzz, a toolkit that automates the discovery

of bugs in Spark by randomly generating data and queries.

SparkFuzz takes a data-before-query generation approach

and enables two testingmodes by comparing query results ei-

ther against a reference database implementation or against

different instances of Spark SQL.

• We deploy SparkFuzz in production and show that it achieves

maximum coverage after generating a small number of queries.

Being able to produce more diverse test cases in a shorter

time is promising and recommends SparkFuzz for testing

code during development.

2 BACKGROUND
Many SQL testing techniques are based on comparison tests, which

compare the system-under-test output with a reference result. A

well-tested relational database management system is SQLite which

employs a comprehensive list of testing techniques to achieve relia-

bility and robustness [11]. In this section we present an overview

of the most common techniques used in SQL testing.

Fuzz Testing. In general, fuzzing is an automated software

testing technique that provides random input data and monitors

whether the tested program manifests unexpected behaviours such

as crashes, exceptions, and invalid outputs. A fuzzer can be ei-

ther generation-based [18] or mutation-based [20] depending on

whether the input data is generated from scratch or by modifying a

given input. Whereas SQL fuzzers such as RQG [6] need to be aware

of their input and program structure, more general-purpose fuzzers

may completely treat the testing environment as a black-box [3, 4].

Anomaly Testing.Anomaly tests seek to verify that the system

exhibits a correct behavior even in situations when something goes

wrong. Whereas, a system may behave correctly on well-formed

inputs, often it is more difficult to respond and operate properly

to invalid inputs. For instance, one may want to check whether

the database system is able to gracefully handle out-of-memory

SQL AST

DataFrame

Unresolved
Logical Plan Logical Plan Optimized

Logical Plan RDDsSelected
Physical Plan

Analysis
Logical

Optimization
Physical
Planning

Co
st

 M
od

el

Physical
Plans

Code
Generation

Catalog

Figure 2: Catalyst has a complex design with pipelined
stages that transform the query from a generic tree repre-
sentation to RDDs.

errors, to respond safely to failed I/O operations, or to recover from

operating-system crashes at runtime [11].

Boundary Value Testing. SQLite has well-defined operation

limits such as the maximum number of columns a table may have

or the maximum length of a SQL statement. Similarly, Spark has

a large set of configuration parameters that have specific value

domains. However, brute-force testing is often impractical because

some input spaces are way too large to test exhaustively. Whereas

brute-force may still be useful in specific cases such as testing every

expression with simple literals of every input type, large classes of

inputs are redundant because they behave equivalently. In contrast,

boundary value testing aims to cover extreme cases of very large

or very small inputs, including empty sets, infinity, null, and NaN.

Additional tests may go beyond the defined limits and verify that

the system correctly reports errors [4, 11, 14].

3 CHALLENGES AND GOALS
In this section, we explain how Catalyst transforms a SQL query in

order to prepare it for execution on a cluster with many machines.

Furthermore, we identify some of the most important dimensions

in assessing correctness of a SQL engine.

3.1 Catalyst Overview
A Spark SQL query has an abstract representation called query
plan which is converted through a sequence of transformations

into a binary that can be distributed and executed on a cluster.

These transformations are performed by Catalyst, which is a highly

extensible framework that enables the addition of new optimiza-

tions. Figure 2 shows that Catalyst creates two types of query plans.

The logical plan provides a high-level representation of the type

of computation we want to perform on the input dataset. In partic-

ular, the logical plan denotes the join operator on two tables, but

avoids defining how to perform the actual operation. This decision

is deferred to physical planning during which the logical plan is

annotated with specific instructions to execute the computation.

For instance, if we join two tables one of which has less than 10 MB,

the join operator is executed as a broadcast-hash join.

Catalyst drives the query from a basic abstract syntax tree to

execution in three phases, i.e., analysis, optimization, and planning,

each of which is a potential source of errors. The analyzer translates

unresolved attributes and relations to fully-typed objects using a

query session catalog. The analyzed logical plan feeds the optimizer

which applies sets of optimization rules using a fixed-point policy

until the plan stops changing. Similarly, the planner converts the

logical plan into a physical plan through a set of planning strategies

SparkFuzz: Searching Correctness Regressions in
ModernQuery Engines DBTest’20, June 19, 2020, Portland, OR, USA

that determine how each computation will be executed. Spark takes

a data-centric approach to query execution by running an additional

stage to generate Java bytecode that is tailored to the physical plan

of the query. In this way, each query has a fixed compiled plan that

is used to process each row of the input dataset.

3.2 Assessing Correctness
The main challenge in assessing correctness is making sure we

have a reference query execution that we know with high fidelity it

behaves well. We use PostgreSQL as our test oracle in assessing the

correctness of Spark SQL. Although PostgreSQLmay also have bugs

we are not aware of, it is a mature open source database system

that is ANSI SQL compliant. Thus, we consider it is a relatively low

chance to encounter test cases that provide identical but incorrect

answers in Spark and PostgreSQL. In this section we present our

goals by identifying several aspects that may impact the correct-

ness of Spark SQL. In order to define correctness of Spark SQL we

consider the following dimensions:

• Correct answer. Our primary goal is to validate the Spark

SQL query answer with the one returned by the reference

database. In order to have an accurate comparison between

the results, we need to make sure our comparator captures

any differences between the SQL dialects used by Spark

SQL and PostgreSQL. Moreover, we further want to be able

to validate whether the query returns the correct answer

for different input data, Spark parameter values, operating

systems, and cluster configurations.

• Useful crashes. Another goal we set is to make sure that

each query executes without crashing at runtime. Thus, in-

valid queries should result in a clear analysis exception show-

ing the reason of failure. We want Spark to reject invalid

queries early on during analysis and avoid their execution.

• Performance. Finally, a more subtle goal is to catch queries

that regress because they are not properly optimized due

to internal bugs. For instance, bugs in Catalyst may lead to

incorrect code generation when employing optimizations

such as dynamic partition pruning [16]. Other interesting

examples are bugs that cause the optimizer either to reach

its iteration limit or to generate code that fails to compile

because of exceeding JIT limits.

4 SOURCES OF ERRORS
Whereas most of the errors in software systems come from bugs in-

troduced by developers, we argue that popular open source projects

such as Spark are at risk of experiencing errors from other sources

as well. Such errors may hinder both the developer productivity and

the agile development of the system, and so we want an automatic

way to guard Spark against them. Based on our experience with

the Apache Spark open source project, we identify several sources

of errors some of which are unrelated to Spark code changes:

• Merge conflicts. In a source-controlled project such as

Spark, a developer typically contributes by creating new

branches of the repository and working independently pos-

sibly for an extended period of time. At the same time, other

Query
profile

Dialect
translator

Spark
query

Postgres
query

vs

vs

Figure 3: SparkFuzz enables two operation modes in which
we validate query results either with PostgreSQL or with a
different Spark version.

developers may change some parts of the same code. This

often results in merge conflicts which are typically resolved

manually by a different person who is also a commiter or

a reviewer of the project. Lack of exhaustive testing may

lead to bugs caused by manual and automated merges. This

problem is exacerbated in the case of forks which are full

long-running versions of the project that might be merged

at a later stage while both repositories evolved differently.

• Code refactoring. Code refactoring is typically a mainte-

nance task that requires re-organizing parts of the project

or features with the goal of simplifying the existing code.

However, developers that perform refactoring may need to

modify a large surface of the software but without having a

deep understanding of the entire codebase. In this way they

can incorporate bugs which may remain uncovered without

adding unit tests that target the interactions between the

modified components. For instance, reorganizing Spark’s

memory management API [8] introduced more virtual func-

tion calls which resulted in a performance regression.

• Semantic changes. In a fast-paced development environ-

ment, we often compromise standard compliance for fast,

iterative development. However, lack of full compliance with

the SQL standard may prevent some users to migrate their

SQL workloads on Spark. As a consequence, the framework

may face frequent changes of the API semantics for better

alignment with the SQL standard. In particular, Spark minor

release 2.4.0 corrected the behavior of the having clause in

the absence of a group by operator by considering it a global

aggregate instead of a local aggregate [9].

• External library updates. The project incorporates depen-
dencies to a myriad of external libraries that are necessary to

manage internal operations from network communication

to data compression. Because these libraries are updated and

maintained externally, new releases may introduce unex-

pected bugs. For example, in the spark-avro data source

package, an upstream library deviated from the schema in

the specification, thus leading to validation exceptions on

previously working code [7].

DBTest’20, June 19, 2020, Portland, OR, USA Bogdan Ghit, , Nicolas Poggi, Josh Rosen, Reynold Xin, and Peter Boncz

...
...

...

...

BigIntBoolean

Timestamp

Decimal

FloatInteger

SmallInt

String
Choose a data type

Random number of rows

Random number of columns

Random number of tables

Random partition columns

Figure 4: SparkFuzz generates input data by randomly con-
structing a table schema and then inserting rows with ran-
dom data that match the schema.

5 THE SPARKFUZZ FRAMEWORK
In this section we present the design of SparkFuzz, a framework for

testing the correctness of Spark SQL against a reference database

such as PostgreSQL. We present two complementary components

for generating random datasets and queries.

5.1 Design Overview
Figure 3 highlights the two operation modes supported by Spark-

Fuzz. In particular, we can compare the query result of Spark SQL

versus a reference database system such as PostgreSQL that is as-

sumed to be correct and would trigger a manual verification in

case of a mismatch. This way of testing provides the strongest cor-

rectness guarantees, but it restricts the coverage of the generated

queries to the set of features of the dialect implemented by the

reference system. Another way of testing correctness is to compare

the query results on multiple instances of the Spark SQL frame-

work. In particular, we can compare the latest stable version with

the development branch, different previous releases, or the same

release with different framework configurations.

A straightforward technique which allows rapid testing of many

queries is to first produce a database with randomly generated ta-

bles and then construct multiple queries over those tables. In this

way we may miss deep data-dependent execution bugs because

complex queries are likely to generate empty result sets on naively

generated data. However, we prefer this approach because it’s sim-

ple and offers the ability to increase operator coverage by quickly

generating thousands of queries.

5.2 Data Generation
SparkFuzz supports generating datasets in different file formats

such as Parquet, Delta, csv, and orcwhich can be set by the user or

randomly selected by SparkFuzz. Figure 4 shows the steps we take

to generate random datasets. Firstly, SparkFuzz randomly selects

the number of tables to populate the dataset with. Whereas for

most query patterns we only need a few tables, having a large

number of tables may be required if we seek to generate queries

that consist of many join operations. Secondly, we set the dimension

of each table by randomly choosing the number of rows and the

number of columns. Based on the number of columns of a given

table SparkFuzz constructs a random schema using a predefined set

SQL Query

WITH

FROMUNION

SELECT

Functions

Constant

GROUP BY
ORDER BY

Table

Column
Alias

Query

Clause

Expression

JOIN

WHERE

Figure 5: SparkFuzz uses a recursive SQL model to generate
queries by randomly selecting clauses and expressions.

of supported data types and fills each row of the table with random

values according to this schema. Finally, SparkFuzz may randomly

select partitioning columns in some of the generated tables.

SELECT

GREATEST(COALESCE(t2.bigint_c5 , 525),

COALESCE(MIN(t2.bigint_c5), 116))

AS int_col ,

COALESCE(MAX(MIN (-554)) OVER (),

-654, -342) AS int_c1 ,

t2.bigint_c5 ,

(MAX(t1.decimal_c4)) != (t2.bigint_c5)

AS boolean_col

FROM table_2 t1

LEFT JOIN table_6 t2 ON

(t2.decimal0_c12) = (t1.decimal_c4)

GROUP BY t2.bigint_c5

Listing 1: An example of query generated with SparkFuzz.

5.3 Query Generation
In order to generate a query we need to define a query profile that

includes all possible SQL features than can be used. At a high-level,

a SQL query may consist of one or multiple clauses such as select,

from, group by, or union. In turn, each clause has one or multiple

expressions that may include constants, columns, or functions. As

Figure 5 shows, this model is recursive because multiple functions

may be nested, whereas some clauses may include sub-queries. The

query profile is extensible and allows adding new functions without

changing the basic structure of the model.

Each clause and operator in the query profile is assigned a fixed

probability that represents its chance of being selected when gen-

erating a query. For instance, to blacklist an operator during query

generation we can set its weight 0 and so, it will never be selected.

SparkFuzz sets a probability of 1 to the mandatory query clauses,

i.e., select and from. Furthermore, SparkFuzz requires setting ad-

ditional inter-dependent weights to select a specific join operator

from all possible join types (e.g., inner, left, or right). Another exam-

ple of operators that have inter-dependent weights are the different

classes of functions that can be employed (e.g., aggregation, ana-

lytic, or basic). Whereas the model can be used to control the logical

SparkFuzz: Searching Correctness Regressions in
ModernQuery Engines DBTest’20, June 19, 2020, Portland, OR, USA

Figure 6: The evolution of the expression and physical oper-
ator coverage during an experiment with 500 queries gener-
ated and executed sequentially by SparkFuzz.

plan of the generated query, it has no control over the physical

plan. To diversify the generated physical plans, SparkFuzz needs to

randomize Spark configuration parameters. In particular, changing

the maximum size in bytes for broadcasting a table may result in

sets of queries that have different fractions of broadcast-hash joins

and sort-merge joins.

In addition to the query profile, we use a dialect translator that

specializes the generated query to a particular SQL dialect. We need

such a translator to address differences between Spark SQL which

is based on the Hive dialect and PostgreSQL which has its own SQL

dialect. An example of a randomly generated query with SparkFuzz

is shown in Listing 1. The query incorporates several SQL features

and the attribute names in the query denote the table data types.

6 EXPERIMENTAL RESULTS
In this section, we assess the effectiveness and coverage of Spark-

Fuzz on a typical setup that we have used to test and verify SQL

correctness in Spark. We implemented our SparkFuzz prototype on

top of Impala RandomQuery Generator [2] whichwe extendedwith

the specific features of the Spark dialect and system configuration.

SELECT

COALESCE(COALESCE(foo.id, foo.val), 42)

FROM foo

GROUP BY

COALESCE(foo.id, foo.val)

Listing 2: The minimized SparkFuzz query that uncovered
an incorrect expression simplification inside the group-by

clause applied during optimization by Catalyst.

Within a year, SparkFuzz uncovered more than 10 analysis er-

rors, 10 runtime crashes, and 20 wrong results. A recent bug we

have found with SparkFuzz is an aggregation query in which the

optimizer incorrectly simplifies the expression inside a group-by

clause. As a result, the expression inside the select clause is refer-

encing neither a grouping nor an aggregate expression. Listing 2

shows the minimized version of the generated SparkFuzz query

after optimization. We notice that the nested coalesce expression

Other
21.8%

WindowSpecDefinitio
3.1%
SpecifiedWindowFra
3.1%
WindowExpression
3.1%
And
3.9%
Coalesce
5.4%
IsNotNull
6.7%

SortOrder
22.3%

Cast
15.0%

AggregateExpression
8.1%

HashPartitioning
7.4%

Figure 7: The distribution of Spark SQL expressions in a 500
query workload generated by SparkFuzz.

in the group-by clause is flattened by Catalyst, thus resulting in an

analysis exception [10].

To analyze the operation of SparkFuzz, we deploy Spark (version

2.4) on a single node that runs the driver next to a PostgreSQL instal-

lation (version 9.5.19). Whereas in benchmarking it’s important to

run representative long-running queries, when testing correctness

we need to maximize the number of queries we run within a rela-

tively short amount of time. Therefore, in this experiment we use a

single-node which is both cost-effective and sufficient for testing

correctness. Furthermore, we generate a relatively small dataset

with only 5 tables each of which has a 5-column wide schema and

5 rows. We executed similar test cases in terms of configuration

and setup for the majority of bugs we found with SparkFuzz.

We generate 500 queries with SparkFuzz which we execute se-

quentially both on Spark and PostgreSQL while automatically com-

paring and reporting the results. Figure 6 shows how the number of

distinct operators selected by SparkFuzz during query generation

increases over time as more queries are generated. We find that

running more queries over time increases the operator coverage.

Nevertheless, SparkFuzz is able to achieve its current maximum

coverage relatively fast after the first 100 queries are generated. In

particular, SparkFuzz has a maximum operator coverage of roughly

50 expressions and 20 physical operators. We have restricted the

current coverage of SparkFuzz to a common set of operators with

the test oracle. Although obtaining the maximum operator coverage

does not guarantee the correctness of the system, the metric can

be used as a stop condition for limiting the total test time.

Figure 7 depicts the most frequent expressions generated by

SparkFuzz excluding attribute references and aliases. We found

sorting, casting, and aggregations to be the most popular expres-

sions in our randomly generated workload. Because Spark is a

general processing engine, it supports a larger number of SQL func-

tions and provides extra functionality when compared to ANSI

SQL. Therefore, in order to remain compatible with PostgreSQL we

limited the coverage by restricting the query profile to a common

set of operators and expressions. However, we aim to further in-

crease the coverage of SparkFuzz through the alternative operation

mode in which we compare results against different Spark versions.

Although this mode provides weaker correctness guarantees, we

will be able to generate random queries using the complete set of

supported functions in Spark.

DBTest’20, June 19, 2020, Portland, OR, USA Bogdan Ghit, , Nicolas Poggi, Josh Rosen, Reynold Xin, and Peter Boncz

7 RELATEDWORK
Whereas a wide array of prior work has focused on testing correct-

ness of software systems [14, 22], there is little work on assessing

the correctness ofmodern SQL engines such as Spark. In this section,

we present an overview of existing fuzzing tools and approaches

that are used to test SQL correctness.

One such approach is Apollo [18], which has been recently pro-

posed to test standard database implementations such as SQLite

and PostgreSQL against performance regressions when the system

is upgraded to a more recent release. The Microsoft SQL Server

group proposed RAGS [23] an automated testing framework for

exploring functional bugs in database systems. RAGS operates by

generating SQL statements through stochastic construction of parse

trees based on the database schema. In contrast, Snowtrail [27] and

Oracle SQL Performance Analyzer [26] define workloads for testing

the system performance by monitoring if the execution exceeds

a baseline performance threshold. Closest to our work are Impala

RQG [2] and SQLsmith [1] which are SQL-aware fuzzers used to test

Impala and CockroachDB, respectively. Both tools use PostgreSQL

as an oracle to validate results, but they have limited coverage and

are prone to false positives because of dialect differences.

In SparkFuzz we pregenerate the input tables and later on we

construct arbitrary queries matching the input schemas of those

tables. Another approach to data and query fuzzing is to generate

queries before input data [12]. With this technique input tables

are generated in such a way that certain queries over them will

return a specified number of results. For instance, we can consider

a join query and then generate two input tables so that the join

returns a non-empty result set. A more advanced application of

this technique is to define different cardinality constraints over

different sub-plans of the query and generate tables that satisfy all

constraints. However, this approach is time-consuming and may

result in a small set of queries that satisfy all constraints.

8 CONCLUSIONS
In this paper we introduced SparkFuzz, a toolkit for testing the

correctness of Spark SQL by means of random data and query

generation. SparkFuzz first takes random schemas to generate input

tables of random sizes, and employs a recursive query model with

features that have fixed probabilities to construct queries. SparkFuzz

validates the correctness of Spark SQL versus a reference database

implementation such as PostgreSQL. Thus, SparkFuzz executes

each generated query both on Spark SQL and PostgreSQL in order

to detect differences in the result sets returned. We demonstrated

that SparkFuzz achieves good coverage with relatively small query

sets and input data. With SparkFuzz we uncovered tens of bugs that

include analysis exceptions, runtime crashes, and incorrect results.

In future work, we want to use operator coverage metrics to limit

the search space in SparkFuzz when generating queries. In this way,

SparkFuzz can be used more frequently in testing code changes at

the granularity of commits rather than releases. In addition, we

aim to reduce the dependency on the test oracle and focus more

on comparison between different versions of the Apache Spark

framework. Thus, instead of using PostgreSQL to validate results,

we will maintain a history of results for the same query and input

data on different versions of Spark.

REFERENCES
[1] https://cockroachlabs.com/blog/sqlsmith-randomized-sql-testing.

[2] https://github.com/apache/impala.

[3] https://jepsen.io.

[4] https://github.com/google/oss-fuzz.

[5] https://postgresql.org.

[6] https://launchpad.net/randgen.

[7] https://issues.apache.org/jira/browse/SPARK-25002.

[8] https://issues.apache.org/jira/browse/SPARK-25317.

[9] https://issues.apache.org/jira/browse/SPARK-25708.

[10] https://issues.apache.org/jira/browse/SPARK-25914.

[11] https://sqlite.org/testing.html.

[12] A. Arasu, R. Kaushik, and J. Li. Data Generation Using Declarative Constraints.

ACM SIGMOD, 2011.
[13] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, et al. Spark SQL: Relational Data Processing in Spark.

ACM SIGMOD, 2015.
[14] B. Beizer. Software Testing Techniques. Dreamtech Press, 2003.

[15] B. Ghit and D. Epema. Better Safe than Sorry: Grappling with Failures of In-

Memory Data Analytics Frameworks. ACM HPDC, 2017.
[16] B. Ghit and J. Sompolski. Dynamic Partition Pruning in Apache Spark. Spark+AI

Summit Europe, 2019.
[17] B. Ghita, D. Tome, and P. Boncz. White-box Compression: Learning and Exploiting

Compact Table Representations. CIDR, 2020.
[18] J. Jung, H. Hu, J. Arulraj, T. Kim, andW. Kang. APOLLO: Automatic Detection and

Diagnosis of Performance Regressions in Database Systems. VLDB Endowment,
13(1):57–70, 2019.

[19] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson,

M. Grund, D. Hecht, M. Jacobs, et al. Impala: A Modern, Open-Source SQL Engine

for Hadoop. CIDR, 2015.
[20] B. P. Miller, L. Fredriksen, and B. So. An Empirical Study of the Reliability of

UNIX Utilities. Communications of the ACM, 33(12):32–44, 1990.

[21] S. Salloum, R. Dautov, X. Chen, P. Peng, and J. Huang. Big Data Analytics on

Apache Spark. Journal of Data Science and Analytics, 2016.
[22] S. K. Singh and A. Singh. Software Testing. Vandana Publications, 2012.
[23] D. R. Slutz. Massive Stochastic Testing of SQL. VLDB, 98:618–622, 1998.
[24] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff,

and R. Murthy. Hive: A Warehousing Solution over a Map-Reduce Framework.

VLDB Endowment, 2(2):1626–1629, 2009.
[25] A. Uta, B. Ghit, A. Dave, and P. Boncz. Low-Latency Spark Queries on Updatable

Data. ACM SIGMOD, 2019.
[26] K. Yagoub, P. Belknap, B. Dageville, K. Dias, S. Joshi, and H. Yu. Oracle’s SQL

Performance Analyzer. IEEE Data Eng. Bull., 31(1):51–58, 2008.
[27] J. Yan, Q. Jin, S. Jain, S. D. Viglas, and A. Lee. nowtrail: Testing with Production

Queries on a Cloud Database. DBTest, 2018.

https://cockroachlabs.com/blog/sqlsmith-randomized-sql-testing
https://github.com/apache/impala
https://jepsen.io
https://github.com/google/oss-fuzz
https://postgresql.org
https://launchpad.net/randgen
https://issues.apache.org/jira/browse/SPARK-25002
https://issues.apache.org/jira/browse/SPARK-25317
https://issues.apache.org/jira/browse/SPARK-25708
https://issues.apache.org/jira/browse/SPARK-25914
https://sqlite.org/testing.html

	Abstract
	1 Introduction
	2 Background
	3 Challenges and Goals
	3.1 Catalyst Overview
	3.2 Assessing Correctness

	4 Sources of Errors
	5 The SparkFuzz Framework
	5.1 Design Overview
	5.2 Data Generation
	5.3 Query Generation

	6 Experimental Results
	7 Related Work
	8 Conclusions
	References

