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Abstract—Many large-scale data analytics infrastructures are
employed for a wide variety of jobs, ranging from short inter-
active queries to large data analysis jobs that may take hours
or even days to complete. As a consequence, data-processing
frameworks like MapReduce may have workloads consisting
of jobs with heavy-tailed processing requirements. With such
workloads, short jobs may experience slowdowns that are an
order of magnitude larger than large jobs do, while the users
may expect slowdowns that are more in proportion with the job
sizes. To address this problem of large job slowdown variability
in MapReduce frameworks, we design a scheduling system called
TYREX that is inspired by the well-known TAGS task assignment
policy in distributed-server systems. In particular, TYREX par-
titions the resources of a MapReduce framework, allowing any
job running in any partition to read data stored on any machine,
imposes runtime limits in the partitions, and successively executes
parts of jobs in a work-conserving way in these partitions until
they can run to completion. We develop a statistical model
for dynamically setting the runtime limits that achieves near-
optimal job slowdown performance, and we empirically evaluate
TYREX on a cluster system with workloads consisting of both
synthetic and real-world benchmarks. We find that TYREX cuts
in half the job slowdown variability while preserving the median
job slowdown when compared to state-of-the-art MapReduce
schedulers such as FIFO and FAIR. Furthermore, TYREX reduces
the job slowdown at the 95th percentile by more than 50% when
compared to FIFO and by 20-40% when compared to FAIR.

I. INTRODUCTION
Data-processing frameworks such as MapReduce that can

be used for large-scale analytics and small interactive queries
may face workloads of jobs with heavy-tailed processing
requirement distributions. As has been abundantly clear both
from theoretical analysis of queueing systems [14], [15] and
from experience with actual deployments of MapReduce and
other frameworks [27], [31], such workloads usually lead to job
slowdowns of small jobs that are at least an order of magnitude
larger than those of long jobs, which may be intolerable to
users. In this paper, we present the design and analysis of
TYREX, 1 a MapReduce scheduler that aims at reducing the
slowdown variability in workloads with many short jobs.

Despite the plethora of performance related studies of data-
intensive workloads, state-of-the-art MapReduce schedulers
still lead to high slowdown variability. In our experience with
processing monitoring data from the BitTorrent global network
using a MapReduce-based logical workflow [18], we have found
that 15% of the jobs account for 80% of the total load, and
that 65% of the jobs complete in a minute. Similarly, several
studies on the performance of modern production clusters in

1Inspired by the dinosaur Tyrannosaurus rex, known for its long, heavy tail.
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Fig. 1. Schematic overview of the queueing model employed by TYREX with
resource partitioning and timers for migrating jobs.

commercial companies like Google and Facebook [7], [20], [24]
report heavy-tailed workloads with highly variable runtimes.
Allowing such workloads to run in non-isolated environments
and to greedily share the system resources severely impacts
the performance of short jobs as they experience long delays
due to large jobs ahead of them.

In Figure 1 we illustrate the scheduling model employed by
the TYREX scheduler. TYREX uses resource partitioning and
work-conserving job migration across these partitions as its two
main principles. A common way of partitioning the resources of
a datacenter is to allocate disjoint sets of machines to multiple
instances of the MapReduce framework [12]. However, this
scheduling model is not attractive for jobs that are moved
across partitions but still require access to the same data, as the
cost of replicating the data across partitions may be prohibitive.
Instead, TYREX operates within a single MapReduce framework
so that jobs running in any partition may read data stored on
any machine.

For isolating the sets of jobs with processing requirements
(their sizes) in different ranges, TYREX imposes runtime limits
(timers) with increasing values which limit the amounts of
processing time jobs may receive in the partitions—jobs that
exceed the timer of one partition are migrated to the next,
retaining the work they have already completed. As fixed timers
are difficult to configure because they require trial executions
of every new workload to find their optimal values, we propose
a method to dynamically adapt the timers based on statistical
properties of the job size distribution.

TYREX is inspired by the TAGS policy [14], but there are
a few important differences. First, as MapReduce frameworks
are usually deployed in datacenters, TYREX has to divide the
framework capacity across the partitions, rather than having
predetermined single-server partitions as in TAGS. Secondly,
MapReduce jobs are conveniently parallel jobs that only require



TABLE I. A POLICY FRAMEWORK FOR OPTIMIZING JOB SLOWDOWN IN DIFFERENT SYSTEM MODELS.

Policy System Model Job Size Preemptive Waste Utilization Description
PSJF [29] single-server known yes none best run the job with shortest original size
SRPT [17] single-server known yes none best run the job which can finish earlier
SITA [16] distr. servers known no high worst each server is assigned only jobs of a given size
TAGS [14] distr. servers unknown no high worst each server limits the amount of CPU per job
FAIR [4] datacenter unknown yes low high weighted fair-sharing
TYREX datacenter unknown yes none high see Section IV

synchronization between the map and reduce phases, which
makes them malleable or elastic with the opportunity to run
multiple jobs simultaneously as opposed to the rigid job model
supported by the FIFO servers in TAGS. Finally, having a
shared underlying distributed filesystem for all partitions of
a MapReduce framework, TYREX enables a work-conserving
mechanism for moving a job from one partition to the next
without loosing the intermediate results, as happens with TAGS.

In this paper, we make the following contributions:
1) We design TYREX, a datacenter MapReduce job

scheduler that places jobs across multiple partitions of
a single MapReduce framework in order to isolate the
sets of jobs of very different sizes. TYREX assumes
no prior job size information and moves jobs across
system partitions without loosing their completed work
(Sections IV-A and IV-B).

2) We incorporate in TYREX two policies to migrate
jobs across partitions that are differentiated by the
type of timer they use in partitions, which may be
fixed or dynamic. To adapt the timers dynamically, we
propose a statistical technique to identify jobs that are
likely to monopolize a given partition for a long time
(Sections IV-C and IV-D).

3) With a set of experiments in a real multicluster system,
we evaluate TYREX relative to standard MapReduce
schedulers and assess the impact of different aspects
of its operation on the job slowdown variability. We
show that our scheduler delivers very low slowdown
variability without a large impact on the median slow-
down for several representative MapReduce workloads
(Sections V and VI).

II. PROBLEM STATEMENT
In this section we explain the problem of job slowdown

variability in MapReduce workloads and we formulate the
goals of our TYREX. To capture the delay sensitivity of jobs
of different sizes, we consider the job slowdown as a metric,
defined for a job as the ratio of its response time and its wall-
clock time in an empty system – when a fixed set of resources
(in our case, the entire capacity of the system) are allocated to it.
To formulate the goal of our scheduler, let F be the cumulative
distribution function of the job slowdown when executing a
certain workload. We define the job slowdown variability at
the qth percentile, denoted by VF (q), as the qth percentile of
F normalized by the median job slowdown, that is:

VF (q) =
F−1(q)

F−1(50)
. (1)

We call VF (95) the overall job slowdown variability of
the workload. Our target is to minimize both the median
job slowdown and the overall job slowdown variability of
MapReduce workloads.

We consider job slowdown as a more fundamental metric
than response time, and the problem of large job slowdowns as a
more fundamental problem than large response times. The latter
are continously being improved by better hardware, leading
to higher speedups of applications and faster data transfers.
In contrast, even though there may be shifts in the balance
of the speeds and capacities of computer systems hardware,
(large) job slowdowns will continue to exist in systems with
contention for resources.

Many MapReduce clusters execute workloads that are
often characterized by heavy-tailed processing requirement
distributions [7], [20]. These workloads contain jobs with the
amount of data to be processed or the sum of the execution
times of all tasks of a job, that may vary by several orders
of magnitude. In systems with such workloads, the small jobs
suffer because they may be delayed for a relatively very long
time due to long jobs ahead of them [31]. Nevertheless, the
users of clusters or datacenters may expect their jobs to be
delayed proportionally to their processing requirements.

In this paper we will generalize the TAGS policy to
scheduling MapReduce workloads with heavy-tailed job-size
distributions running in partitioned datacenters with each
partition having a runtime limit. We will show that this way
of scheduling MapReduce jobs outperforms FAIR, the most
popular MapReduce scheduler, with respect to both the median
slowdown and the slowdown variability for a broad range of
job size distributions.

III. BACKGROUND
In this section we present an overview of the main

scheduling disciplines that optimize the mean response time or
the mean job slowdown in both single-server and distributed-
server systems. In Table I, we show the main characteristics
of several policies which have been investigated in the past.
In single-server systems, policies that are biased towards
short jobs, also known as SMART policies [30], are to be
preferred as they prevent short jobs from experiencing long
delays. The fundamental idea behind these policies is to
prioritize short jobs over longer ones like Preemptive-Shortest-
Job First (PSJF [29]) and Shortest-Remaining-Processing-Time
(SRPT [17]). Although SRPT is optimal with respect to mean
response time, the policy is rarely used in practice as it
may lead to starvation of long jobs in order to help the
short ones [15]. Another reason for the limited popularity of
SRPT is that its effectiveness relies on preemption, which is
difficult to implement for long jobs that can easily overflow
the memory [16]. Instead, in supercomputers where jobs
may be served by multiple hosts, size-based partitioning is
often employed to isolate the performance of jobs with very
unbalanced processing requirements [9].

When the job size distribution and the individual sizes
of (rigid) jobs are known, the servers of a distributed-server
system using the FCFS policy can be configured to serve each



Fig. 2. The fine-grained resource partitioning employed by TYREX with CPU
slots allocated across three partitions.

only the jobs whose sizes are in a specific range (the Size
Interval Task Assignment (SITA) policy [15]). It can be shown
that when the size ranges are chosen in such a way that all
servers have the same load, the SITA policy is optimal in terms
of the average job slowdown if the job-size distribution is
heavy-tailed. The intuition behind this result is that in SITA, the
job-size variability of each server is very much reduced. The
SITA policy can be generalized for unknown job sizes through
a simple yet very efficient technique that guesses the job sizes
by killing them when they exceed the maximum runtime of a
server and restarting them on the service with the next higher
runtime range (the Task Assignment based on Guessing Sizes
(TAGS) policy [14]). Traditionally, these have been successfully
implemented in distributed-server systems, but they have not
been used so far in clusters or datacenters for fear that they may
lead to system fragmentation and underutilization of resources.

IV. THE TYREX SCHEDULER
In this section, we present a scheduling model to reduce

the variability in job slowdown in MapReduce. Our scheduler,
TYREX, assumes no prior knowledge about the jobs, divides
the MapReduce framework computing capacity in disjoint
partitions, and migrates jobs across those partitions. We propose
two policies used by TYREX to confine jobs with similar
processing requirements to separate partitions.

A. Design Considerations
TYREX resembles the structure of the TAGS policy, but there

are three key elements in which it is different. First, TAGS was
designed for a distributed-server model in which each host is
a single multi-processor machine that can only serve one job
at a time. In contrast, TYREX targets a datacenter environment
in which the system capacity is divided across partitions with
many resources. As a result, instead of only having the timers as
parameters as in TAGS, in our model we also have the partition
capacities as parameters.

Secondly, TAGS assumes simple, rigid (sequential or paral-
lel) non-preemptible jobs that may only run on a single host
until completion. In contrast, our (MapReduce) job model is
more complex as there are intra-job data precedence constraints
(map before reduce) and data locality preferences (of map tasks),
and as jobs are elastic (or malleable) and can run simultaneously,
taking any resources they can get when it is their turn.

Thirdly, TAGS does not preserve the state of a job when
it moves it from one server to the next. As a consequence,
long jobs will get killed at every server except at the one
where they run to completion, at every step losing all the work
performed and thus wasting CPU time. Instead, TYREX takes
a work-conserving approach by allowing jobs that are being
moved from one partition to the next to retain their work and to
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Fig. 3. The job runtime without migration versus the job runtime with
migration across two partitions in a 20-worker Hadoop framework.

gracefully resume their executions without redoing previously
completed work.

B. System Model
The main design elements of our scheduler are resource

partitioning and migration of jobs from one partition to another.
Frameworks such as MapReduce employ a fine-grained resource
sharing model, with processors divided into slots and with jobs
divided into short tasks that run on slots. Therefore, we partition
the compute slots of the MapReduce framework into disjoint
partitions of fixed sizes, while keeping the storage accessible
for all processors. This way of partitioning is attractive for jobs
that may be moved across partitions but still require access to
the same data, as there is no need of replicating the data across
the partitions. TYREX operates within a single MapReduce
framework and partitions the compute slots of this framework
into some number K of partitions, each with its own queue
of jobs with similar processing requirements, that all share
access to the same underlying filesystem. TYREX allocates
fixed capacities to its system partitions. The fraction of compute
slots allocated to partition Pk represents its capacity and is
denoted by Ck, k = 1, 2, . . . ,K. We assume jobs to be served
in FIFO order in all partitions. In Figure 2 we give an example
of a standard MapReduce framework which uses fine-grained
resource partitioning to split its CPU slots among three partitions
(C1 = 25%, C2 = 25%, and C3 = 50%). All three partitions
have access to the data stored in HDFS.

Job migration in TYREX is facilitated by the distributed file
system that is shared across the whole framework, with the
intermediate results of tasks executed within any partition being
persistent and visible after a job has been moved to another
partition. To avoid wasted work, the scheduler allows a job
to finish its running tasks in a given partition after the timer
has expired. As TYREX migrates jobs across partitions of a
single framework, the cost of migrating a job across partitions
is zero. In Figure 3 we assess the overhead of moving jobs
across different partitions in a 20-node Hadoop framework. We
set two equally sized partitions and we measure the job runtime
without and with migration of four MapReduce applications
(Wordcount, Sort, Grep, and PiEstimator) executing 600 map
tasks and 60 reduce tasks. To execute a job without migration,
we set the timer of P1 to ∞. To migrate a job across the two
partitions, we set the timer of P1 to 50% of the job size. As
expected, TYREX has no overhead in migrating jobs across
partitions.

TYREX decides which jobs should be migrated from one
partition to the next whenever a task of a job in any partition
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Fig. 4. The squared coefficient of variation of Lp versus the squared coefficient of variation of Rp in our HVW, MVW, and LVW workloads for cutoff points p
in the range between 30-2000 s.

is completed. To do so, TYREX uses one of two policies,
STATICTAGS and DYNAMICTAGS, which we present in the
remainder of this section. For both our policies, we define the
current partial size of a job in a given partition at time t as the
total runtime of its tasks completed in that partition at time t.

C. The STATICTAGS Policy
As we assume that the processing requirements of jobs

cannot be anticipated, we cannot adapt the SITA [15] policy to
our situation, but we need a variation of the TAGS [14] policy
in order to differentiate job sizes. Towards this end, we define
for every partition k, k = 1, 2, . . . ,K a timer Tk which is set
to the total amount of service that jobs may receive while
they are in partition Pk. Any job submitted to TYREX is first
dispatched to partition P1. When the partial size of a job in
any partition Pk exceeds the timer Tk, TYREX moves the job
to the next partition Pk+1.

As we are especially interested in workloads with heavy-
tailed size distributions and many short jobs, we can expect
that the timer Tk of partition Pk should be set to a value
that is (much) larger than the timer Tk−1 of partition Pk−1,
k = 2, 3, . . . ,K. We set TK to ∞. However, setting the
timers is difficult, and may in practice have to be repeated
often. Unfortunately, the optimal timers of TAGS in distributed
server systems already have complex forms even for well-
behaved distributions like Pareto [14]. Hence, we take an
experimental approach to determining the optimal timers with
the STATICTAGS policy while keeping the partition capacities
fixed.

D. The DYNAMICTAGS Policy
In this section, we present the DYNAMICTAGS policy in

which timers are dynamic, so the problem of setting their values
disappears. We take a statistical approach to assessing the job
size variability, which we apply to three realistic MapReduce
workloads. The basic idea behind DYNAMICTAGS is to reduce
the variability of the current partial job sizes in any partition
by migrating those jobs that are likely to require significantly
more processing time than the rest of the jobs in the same
partition.

In order to present DYNAMICTAGS, we need the following
definitions. Let X be a positive, real stochastic variable (e.g.,
corresponding to a heavy-tailed job-size distribution), let CV
be its coefficient of variation, and let p be a cutoff point in that
distribution. Similarly to previous work [14], [15], we measure
the variability of the job-size distribution using the squared

CV , which is the ratio between the variance and the squared
mean of X . We define Lp = min(X, p) and Rp = X−p when
X > p as two random variables so that X = Lp +Rp for any
cutoff point p. To balance the variability across Lp and Rp, we
seek a cutoff point p for which the values of the squared CV
of Lp and Rp are equal, and we call that p the optimal cutoff
point (we implicitly assume that there is a unique point with
this property, which is always the case for our distributions).

To put the DYNAMICTAGS policy into perspective, we
consider the distribution of job sizes in three workloads, i.e.,
HVW, MVW, and LVW, which we define in Section V. As has
been abundantly shown in recent studies, MapReduce workloads
may have very variable job size distributions [20], [8]. In
particular, the squared CV values of the HVW, MVW, and LVW
workloads are 20, 10, and 4, respectively. In Figure 4 we show
the values of the squared CV of Lp and Rp for cutoff points
p in each workload in the range of 30-2000 s. We see that
increasing the value of the cutoff point has opposite effects on
the variability in Lp and Rp, with the squared CV of Lp being
maximum when the squared CV of Rp is minimum and vice
versa. Of course, Lp (Rp) is close to the complete workload
for very large (small) values of p, respectively.

More importantly, we find that the variabilities in Lp and
Rp are unbalanced when the squared CV of Lp has a value
that is higher than 2. As we are covering with our workloads a
wide range of job size variabilities (see Table II) for which 2
turns out to be a good value (see the results in Section VI-D),
we conclude that having a squared CV higher than 2 in Lp is
a good indicator of unbalanced job sizes. Hence, we aim for a
squared CV in Lp that is lower than 2. Figure 4 also shows that
the squared CV of Rp is flat and relatively low (below 2), which
means that further splitting Rp, and so having more than two
partitions, is not very promising. Indeed, several experiments
we did with three partitions confirmed this conclusion.

The DYNAMICTAGS policy now works in the following
way. When it is invoked, it checks all partitions too see whether
the value of the squared CV of the distribution of the current
partial job sizes is higher than 2. If this does not hold for a
partition, DYNAMICTAGS does not migrate any job from it.
Otherwise, DYNAMICTAGS determines the optimal cutoff point
in the distribution of the current partial job sizes, and uses that
cutoff point as the value of the dynamic timer to migrate those
jobs that exceed it to the next partition.

From a queueing-theory perspective, Lp captures the notion
of young jobs, while Rp represents the residual lifetime of jobs.



In particular, if the distribution of job sizes is heavy-tailed then
the residual lifetime of young jobs is stochastically smaller
than the residual lifetime of old jobs. As a consequence, the
DYNAMICTAGS policy seeks in any partition Pk a cutoff point
p so that Pk only serves young jobs that are likely to leave the
system soon. In contrast, old jobs with larger residual lifetimes
are migrated to the next partition.

V. EXPERIMENTAL SETUP
In this section we present the workloads and the configura-

tion of the infrastructure we use for the experimental evaluation
of TYREX. To design our workloads we use a comprehensive
set of representative MapReduce applications, including both
standard benchmarks and complex, real-world workflows. In
this paper we take an experimental approach and we evaluate
TYREX by means of experiments in a real-world multicluster
system. The total time used for experimentation exceeded
20,000 hours system time.

Standard benchmarks. The Hadoop distribution provides
a set of synthetic benchmarks abundantly used in performance
evaluation studies of MapReduce frameworks. We use the
following applications from Hadoop: Wordcount, PiEstimator,
Sort, and Grep. Wordcount and PiEstimator are CPU-intensive
applications used to retrieve the number of occurences of each
unique word in a given set of input files and to estimate the real
value of π using the quasi-Monte Carlo algorithm. In contrast,
Grep and Sort are disk intensive applications used to search for
a given pattern in the input files and to generate the content of
the input files in non-decreasing order.

Complex workflows. BTWORLD is a complex and very
challenging MapReduce-based logical workflow which we
designed to observe the evolution of the global-scale peer-
to-peer system BitTorrent [18]. The workflow consists of 26
MapReduce jobs with different resource bottlenecks (CPU,
memory, or disk) and is used for processing monitoring data
collected periodically from the BitTorrent system. We use 9
BTWORLD jobs which compute answers to a large number of
questions related to the operation of BitTorrent (e.g., How does
a tracker evolve in time?, How many active hashes are in the
system?, Which are the most popular hashes and swarms?).
BTWORLD jobs process a multi-column input dataset that
contains timestamped, per-tracker statistics of the BitTorrent
content: the number of users with fully and partially downloaded
content, and the number of completed user downloads.

MapReduce workloads. In our experiments we will use
three workloads that we create using the Wordcount, PiEsti-
mator, Sort, Grep, and BTWORLD applications and that are
differentiated by their variability of job sizes. Each of these
workloads consists of a stream of 300 jobs with a Poisson
arrival process. In our evaluation of TYREX we designed all
three workloads to impose an average load of 70%.

The three workloads we create are called HVW, MVW, and
LVW for High/Medium/Low Variability Workload, and they
have, going from one to the next, decreasing squared CV values
of their job size distributions. In Figure 5(a) we distinguish
four ranges of job sizes to show the job size distributions in
our workloads: “tiny” ( < 1 minute), “short” (1-10 minutes),
“medium” (10-100 minutes), and “large” (> 100 minutes).
In all workloads there is a large fraction of tiny and short
jobs combined (more than 60%). In Figure 5(b), we show the
fractions of the total CPU time consumed by all jobs together
with a cutoff point as defined in Section IV-D of 1, 10, and
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Fig. 5. Comparing the workloads: (a) the job size distributions, and (b) the
sum of the CPU time of all jobs up to 1, 10, and 100 minutes as a fraction of
the total CPU time.

100 minutes, respectively. For example, even for the HVW
workload, if the timer of partition P1 is set to 10 minutes, the
fraction of the load processed by partition P1 is only 10%. Our
workloads are representative for a broad range of computer
systems workloads, having squared CV values in the range
of 4 to 20 – the standard TPC benchmarks for evaluating
the performance of computer systems exhibit squared CV
values in this range [26]. As heavy-tailed workloads fit recent
measurement of MapReduce production clusters [20], the HVW
and MVW workloads with high variability of job sizes are more
interesting in our evaluation.

TABLE II. SUMMARY OF THE EXECUTION OF THE HVW, MVW, AND
LVW WORKLOADS.

Statistics HVW MVW LVW
Total jobs 300
Squared CV 20 10 4
BTWORLD jobs 33 45 10
Total maps 6,139 11,866 30,576
Total reduces 788 1,368 3,089
Temporary data [GB] 573 693 1,062
Persistent data [GB] 100 92 303
Total CPU time [h] 63.6 124.6 306.9
Total runtime [h] 3.51 3.98 5.31

To understand in more detail the structure of our workloads,
we show in Table II execution summaries when all jobs are
executed sequentially in an empty 20-node Hadoop framework.
HVW spans more than 7,000 (map and reduce) tasks in total
and requires more than 60 h CPU time. MVW has more than
12,000 (map and reduce) tasks in total and requires twice as
much CPU time. The former two workloads are comparable in
the amount of persistent data generated and the total runtime in
an empty system. LVW consists of more than 33,000 (map and
reduce) tasks, requires five times more CPU time than HVW,
and generates three times more persistent data than both HVW
and MVW.

DAS-4 deployment. The DAS-4 [2] cluster we use in our
experiments has 20 dual-quad-core compute nodes with 24 GiB
memory per node and 50 TB total storage. The DAS-4 nodes are
connected through 1 Gbit/s Ethernet (GbE) and 20 Gbit/s QDR
InfiniBand (IB) networks. We use Hadoop-1.0.0 over InfiniBand
and we configure at each node 6 map slots, 2 reduce slots, and
3 GiB memory per running task. The HDFS uses a virtual disk
device with RAID-0 software and 2 physical devices with 2 TB
storage in total per node.

Baseline policies. We contrast TYREX with two state-of-the-
art scheduling algorithms in data-intensive frameworks – FIFO
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and FAIR. The former is the default scheduler in Hadoop and
assigns both map and reduce tasks using the first-in-first-out
scheduling discipline. The later is widely used in deployment
and is a discrete version of the weighted processor-sharing
discipline which allocates slots to jobs proportional to the
number of their tasks.

VI. EXPERIMENTAL EVALUATION
We evaluate TYREX using our prototype implementation in

Hadoop on a 20-machine cluster. We investigate the setting of
capacities and timers and the performance of the STATICTAGS
policy in Sections VI-A and VI-B. Further, we analyze the way
the dynamic timers adapt over time and the performance of
the DYNAMICTAGS policy in Sections VI-C and VI-D. Finally,
we compare TYREX with our two baselines, the FIFO and FAIR
schedulers in Section VI-E.

A. Setting Capacities and Timers
One of the issues in analyzing and deploying TYREX with

the STATICTAGS policy is setting the number of partitions
and the values of the partition capacities and timers. As we
argued in Section IV-D, having more than two partitions is not
worthwhile, so we consider having only two partitions.

We will first investigate the relation between the partition
capacity and the partition timer with the STATICTAGS policy
for each workload. To this end, we seek to determine for
each partition capacity its optimal timer, that is the timer that
minimizes the overall job slowdown variability, as defined in
Section II. Figure 6 shows the values of the optimal timer
for a range of capacities of partition P1. We see that the
optimal timer of partition P1 is very insensitive to the partition
capacity when the job size variability is high. In particular,
STATICTAGS has a low optimal timer (below 250 s) of partition
P1 for a relatively long range of partition capacities with both
the HVW (squared CV of 20) and the MVW (squared CV of
10) workloads. However, the optimal timer of partition P1 is
considerably more sensitive to the partition capacity when the
job size distribution is more balanced. Hence, the optimal timer
of partition P1 increases by a factor of 5 when the partition
capacity increases from 10% to 40% for the LVW (squared CV
of 4) workload.

Intuitively, TYREX aims to fit in partition P1 the vast
majority of tiny and short jobs, which implies that at most
10% of the total load in all workloads has to be processed in
partition P1 (see Figure 5(b)). As a consequence, more than
90% of the total system load, which at an imposed load of
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Fig. 7. The utilizations of partitions P1 and P2 versus the workload variability
with STATICTAGS.
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Fig. 8. The fractions of jobs completed in partition P1 and P2 versus the
workload variability with STATICTAGS.

0

1

2

3

4

5

HVW MVW LVW
Workload

Median
slowdown

Slowdown
variability

(a) C1 = 20%

HVW MVW LVW
Workload

Median
slowdown

Slowdown
variability

(b) C1 = 30%

Fig. 9. The median job slowdown and the job slowdown variability versus
the workload variability with STATICTAGS.

70% amounts to 63% of the system, has to be handled by
partition P2. Therefore, to keep the second partition stable we
need to set the size of partition P1 equal to at most 30% of the
total system capacity. Indeed, it turns out that the STATICTAGS
policy achieves the best job slowdown performance for all our
workloads when the capacity of partition P1 is set to 20% or
30%. Therefore, in the remainder of this section we report
results only for these two partition sizes.

Next, we analyze how the STATICTAGS policy distributes
the system load across its partitions. In Figure 7 we show the
utilizations in partitions P1 and P2 for a capacity of partition
P1 of 20% and 30% with its timer set to the optimal value
according to Figure 6. As we expected, STATICTAGS is rather
aggressive in migrating jobs from partition P1 to partition P2 so
that short jobs which occur in large fractions in our workloads,
consistently receive service in partition P1 under a relatively
low load. In particular, we see that the utilization of partition
P1 is lower than 30% while the utilization of partition P2 is
higher than 75%. Interestingly, we see that the unbalance of the
utilizations in partitions P1 and P2 is larger for MVW and LVW
than for HVW. The reason for this result is that STATICTAGS
shifts the job slowdown variability to partition P2 so that the
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Fig. 10. The dynamic timer of partition P1 with its capacity set to 30%.

vast majority of short jobs in our HVW workload are completed
in partition P1.

B. Performance of STATICTAGS
The main purpose of setting timers is to have a decent

fraction of short jobs finished in the first partition and to avoid
overload in any partition. In Figure 8 we show the fraction of
jobs that are completed in each of the two system partitions
when the capacity of partition P1 is set to 20% and 30%. The
timers are set to their optimal values depicted in Figure 6. As
we expected, the fractions of jobs that are completely executed
within partition P1 is very high for both HVW and MVW (more
than 80%). In contrast, the fractions of jobs that are finished in
partitions P1 and P2 are more balanced for LVW (less than 60%
are completed in partition P1). For all workloads and more
noticeable for LVW, the fraction of jobs finished in partition
P1 increases for larger partition sizes.

We show in Figure 9 the slowdown performance of the
STATICTAGS policy having the capacities of partition P1 of
20% and 30% with the timers set to their optimal values
according to Figure 6. As a hint to reading this and later
similar figures, the values at 20% capacity of partition P1

should be interpreted as having a 95th percentile of the job
slowdown distribution of about 4.38 (2.05 x 2.14). We see that
STATICTAGS has very good performance for the HVW workload,
with both the job slowdown variability and the median job
slowdown being less than 2. Moreover, we observe that the
performance of STATICTAGS is relatively good for the MVW
and LVW workloads, with the median job slowdown and the job
slowdown variability being less than 2 and 3.3, respectively.

We find that STATICTAGS is not always effective in unbal-
ancing the load across its partitions. Clearly, if STATICTAGS
uses a low capacity for partition P1 then short jobs may
experience large job slowdowns because they always run under
a relatively high load. We observe this phenomenon when the
capacity of partition P1 is set to 10% for the HVW workload.
Similarly, we see that it is difficult to find a good timer when
the capacity of partition P1 is set to 40% because we are at
risk at overloading partition P2.

C. Evolution of Dynamic Timers
The distinguishing element of the DYNAMICTAGS policy is

its operation without the burden of finding the optimal timers
for given partition capacities. In this section we will investigate
how the dynamic timers of DYNAMICTAGS adapt over time
and their effect on the load across partitions.
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Fig. 11. The utilizations of partitions P1 and P2 versus the workload
variability with DYNAMICTAGS.
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Fig. 12. The fractions of jobs completed in partition P1 and P2 versus the
workload variability with DYNAMICTAGS.
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Fig. 13. The median job slowdown and the job slowdown variability versus
the workload variability with DYNAMICTAGS.

In Figure 10 we show for each workload how the value
of the dynamic timer of partition P1 changes during a 30-
minute period when the capacity of that partition is set to
30%. Similarly to the STATICTAGS policy, we see that the
timer converges to lower values when the job-size distribution
is more variable. Indeed, for HVW the timer is always set to
some value in the range between 50 and 300 s, for MVW most
of the timer values are in the range between 100 and 500 s,
and for LVW the timer varies between 500 and 2500 s. These
increasingly wider and higher ranges nicely match the results
in Figure 4.

In Figure 11 we show how DYNAMICTAGS distributes the
imposed system load across its partitions for capacities of
partition P1 of 20% and 30%. We observe that DYNAMICTAGS
assigns a significantly lower load to partition P1 (less than 30%
of the total load), which is exactly the same phenomenon as in
the case of the STATICTAGS policy (see Figure 7). Apparently,
DYNAMICTAGS is rather aggressive in migrating jobs from
partition P1 to partition P2 so that short jobs, which occur in
large fractions in our workloads, consistently receive service
in partition P1 under a relatively low load. We see that the
partition utilizations with DYNAMICTAGS and STATICTAGS
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Fig. 15. The job slowdown distributions using FIFO, FAIR, STATICTAGS, and DYNAMICTAGS policies for each workload.

are very close for the HVW and MVW workloads. In contrast,
DYNAMICTAGS has a higher load in partition P1 for LVW
because its job size variability is only 4. As this workload is
more balanced, DYNAMICTAGS has to migrate fewer jobs from
P1 to P2.

D. Performance of DYNAMICTAGS
DYNAMICTAGS adapts the timer of partition P1 as the

jobs in the queue make progress, rather than setting a fixed
value which is used for all incoming jobs, as in STATICTAGS.
Although DYNAMICTAGS operates fundamentally different than
STATICTAGS, we show in this section that having timers of
any kind (dynamic or fixed) has the same effect on the job
slowdown variability.

In Figure 12 we show the fractions of jobs that are com-
pleted in each partition when the capacity of partition P1 is set
to 20% and 30%. We see that with the DYNAMICTAGS policy
more than 80% of jobs in HVW and MVW are completed in
partition P1. Conversely, as the workload variability decreases,
DYNAMICTAGS migrates more jobs to partition 2, so the
fractions of jobs that are completed in different partitions are
more balanced with LVW than with HVW and MVW. In particular,
we observe that the fractions of jobs that are completed in
partition P1 are 10% higher with DYNAMICTAGS than with
STATICTAGS for the LVW workload. This result shows that
our DYNAMICTAGS policy is more conservative as it migrates
jobs based on their relative progress (current partial job sizes),
rather than using a fixed timer as in the STATICTAGS policy.

In Figure 13 we show the median job slowdown and
the job slowdown variability when the capacity of partition
P1 is set to 20% and 30%. Two important things stand out.
First, DYNAMICTAGS offers very low median job slowdown
(below 2.2) and slowdown variability (below 3.2) for all
our workloads, which are very close to the corresponding
values with STATICTAGS shown in Figure 9. More importantly,
Figure 13 also shows that the DYNAMICTAGS policy offers
similar improvements for different capacities of partition P1.

E. Improvements from TYREX
In this section we compare our TYREX scheduler with two

baselines – FIFO, the default scheduler in Hadoop, and FAIR,
the most popular MapReduce scheduler. For TYREX we set the
capacity of partition P1 to 30% and we use the optimal timer
according to Figure 6 (only for STATICTAGS).

In Figure 14 we show the median job slowdown and the job
slowdown variability for each policy with all our workloads.
For the HVW workload, we find that TYREX with any of its
two policies cuts in half the job slowdown variability while
maintaining roughly the same median job slowdown when
compared with both FIFO and FAIR. For the MVW and LVW
workloads, when compared with FIFO, TYREX reduces the job
slowdown variability and the median job slowdown by 30%
and 50%, respectively. Somewhat surprisingly, in these cases
the job slowdown variability is roughly equal with TYREX and
FAIR, but TYREX with any of its two policies improves the
median job slowdown by up to 30%.
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In order to better understand the magnitude of the improve-
ments we obtain with TYREX, we compare in Figure 15 the job
slowdown distributions for each policy with all our workloads.
Clearly, TYREX using any of the two policies is superior to both
FIFO and FAIR as the distributions of the job slowdowns with
TYREX have (much) smaller interquartile ranges and outliers
than with the baselines, which was our main goal defined in
Section II. In particular, for all workloads TYREX reduces the
job slowdown at the 95th percentile by 50-60% when compared
with FIFO and by 20-40% when compared with FAIR.

To be realistic, so far we imposed a moderate to high system
load of 70%. Finally, we design a stress test to evaluate the
performance of TYREX under heavy loads. In Figure 16 we
show the job slowdown distributions with all policies for the
HVW workload under a system load of 90%. TYREX with any
of the two policies is by far the best scheduler as the job
slowdown distributions are very narrow and much lower than
with the baselines. In particular, with TYREX, no job in the
workload has a slowdown that is higher than 10. Surprisingly,
we find that FAIR has very poor performance and cannot handle
the workload when the system is heavy-loaded. Not only is the
job slowdown distribution very wide and unbalanced, but also
the makespan of the experiment is twice as long as with TYREX.
The workload has a total submission schedule of 25 minutes and
is completed by FAIR only 45 minutes after the arrival process
ends. In contrast, with TYREX the workload is completed
already 9 minutes after the arrival of the last job. Apparently,
with FAIR large jobs may occupy underutilized reduce slots
which results in very long waiting times for shorter jobs. These
non-work-conserving effects in FAIR have a major impact on
the stability of the system under high loads. In contrast, TYREX
alleviates this issue by confining jobs to smaller partitions, so
that no large job monopolizes the reduce slots in the system.

VII. RELATED WORK
The problem of job size variability in MapReduce clusters

was first identified in [31], but since then there has been little
work on the performance of size-based scheduling policies in
data analytics frameworks. This work aims to advocate for the
need of such policies for MapReduce workloads. To this end,
we investigate the design and implementation of size-based
scheduling policies in MapReduce-based systems.

During the past decade, performance of MapReduce became
a rich exploration domain, leading to several papers focusing
on diverse aspects of MapReduce scheduling: data locality [31],
stragglers [5], [6], resource heterogeneity [33], or elastic scal-
ing [12], [13], [21]. State-of-the art schedulers for MapReduce-
based systems assume they have complete control over a fixed
set of resources, thus they are typically deployed on dedicated
clusters of machines. All three main schedulers incorporated in
Hadoop (FIFO [1], FAIR [4], and CAPACITY [3]) fall into this
category. Whereas FIFO executes jobs in order of their arrival
with five priority levels using the full system capacity, both
FAIR and CAPACITY divide the system capacity across a number
of queues. FAIR uses a processor-sharing scheduling policy to
divide the system processors across different (sets of) jobs and
CAPACITY employs multiple statically configured queues in
order to confine distinct users to single partitions. The main
design motivation of the latter two was to prevent large jobs
or heavy users from monopolizing the framework. However,
these schedulers do not solve the problem of job slowdown
variability. While FAIR hurts the overall cluster performance
due to resource contention and thrashing, CAPACITY does not
explicitly handle job sizes.

We have discussed throughout the paper several size-based
scheduling policies which have a strong bias towards short jobs.
Although these policies have been analyzed for distributed-
server systems [14], [15], supercomputing workloads [25], and
cloud compute-intensive workloads [10], a realistic investigation
of such policies in datacenters for MapReduce workloads is
currently missing. In particular, size-based scheduling has been
employed in Hadoop [23] with adaptations of two policies:
Shortest-Remaining-Processing-Time (SRPT) and Fair-Sojourn-
Protocol (FSP). However, these approaches have rather limited
applicability in large-scale datacenters as they require either
accurate estimations of job sizes [22] or periodic simulations
of queued jobs in a virtually fair system [11], [23]. The main
idea behind FSP is to extend the SRPT policy with a job aging
function which virtually decreases the sizes of the waiting jobs,
thus avoiding starvation of the large jobs.

MapReduce workloads have a complex internal structure
with intra-job data precedence constraints between the map
and reduce phases which can run on any number of resources
as long as the input data is accesible through a distributed
filesystem. Therefore, in this paper, we adapt the structure of
the TAGS policy to datacenter environments by having partition
capacities in addition to the timers as parameters and we use
the underlying distributed fileystem to migrate jobs in a work-
conserving way instead of killing jobs when they are migrated
across partitions.

Datacenter schedulers such as MESOS [19] or YARN [28]
employ a two-level scheduling architecture by dynamically
allocating resources to different specialized frameworks (e.g.,
Hadoop [1] or Spark [32]). MESOS employs fine-grained
resource sharing across different frameworks and delegates the
control of resources to the frameworks by initiating resource
offers. Thus, the frameworks implement specific policies to
decide which and how many resources to accept. In contrast,
YARN takes a request-based approach and considers application-
specific constraints (e.g., job size, hardware requirements, data
locality) to allocate resources from a fixed set of machines to
each application. As our work focuses on job scheduling in
frameworks which have complete control over a fixed set of



resources, YARN can easily incorporate a scheduling system
such as TYREX to schedule a more diverse array of applications
beyond the traditional MapReduce.

VIII. CONCLUSIONS
Reducing job slowdown variability while keeping the

median job slowdown relatively low is an attractive yet
challenging target in MapReduce frameworks. In this paper
we investigated a class of size-based scheduling policies that
confine (sets of) jobs of similar sizes to single partitions of
the MapReduce framework. We have first introduced a general
model for exploring the job slowdown variability problem with
heavy-tailed MapReduce workloads. Based on this model we
have designed a scheduling system called TYREX that partitions
the set of resources of the framework and isolates sets of jobs of
very different sizes in those partitions. To do so, TYREX imposes
runtime limits (partition timers) and successively executes
parts of jobs in a work-conserving way in each partition (the
STATICTAGS policy). On top of that, to remove the burden of
finding the optimal timers, we develop a statistical model for
migrating jobs in a dynamic way that achieves near-optimal
job slowdown performance (the DYNAMICTAGS policy).

With a comprehensive set of experiments on a cluster
system, we showed that TYREX achieves very balanced job
slowdown distributions for a broad range of representative
MapReduce workloads. In particular, TYREX cuts in half the job
slowdown variability while preserving the median job slowdown
for workloads with high variability of job sizes. Furthermore,
unlike FIFO and FAIR, TYREX delivers good performance and
balanced job slowdowns even in unfavorable conditions of
heavy load. We conclude that TYREX outperforms state-of-the-
art schedulers like FIFO and FAIR with respect to both job
slowdown variability and median job slowdown for typical
MapReduce workloads.
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