# Towards an Optimized Big Data Processing System

The Doctoral Symposium of the IEEE/ACM CCGrid 2013 Delft, The Netherlands

### Bogdan Ghiț, Alexandru Iosup, and Dick Epema

### Parallel and Distributed Systems Group Delft University of Technology Delft, The Netherlands





**Delft University of Technology** 

# PhD at TU Delft

### Candidate: Bogdan Ghiţ

*Group:* Parallel and Distributed Systems

Supervisors: Dick Epema, Alexandru Iosup

*Research Topic:* Resource management in grids and clouds *Start date:* 24 October 2011

Finish date: 24 October 2015



# "The Data Deluge"

*"According to one estimate mankind created 150 exabytes (billion gigabytes) of data in 2005. This year, it will create 1,200 exabytes."* 



# The second se

### The data is difficult to store, even harder to analyze it



3

The Data Deluge, The Economist, 25 February 2010

# **Data Sources**

Computer Science

### • LinkedIn

Daily batch processing for "People you may know" recommendations

The State of LinkedIn





> 30 PB by March 2011 = 3,000 x
Library of Congress





# **MapReduce and Beyond**

- Master-slave model
- MR-cluster
  - Stack of frameworks for large-scale data processing



- Multiple users vs. Isolation
  - MR-clusters on-demand
  - Isolation w.r.t. performance, data, failure, and versioning
- Data volume vs. Limited resources
  - ➤ Use resources from multiple clusters
  - Dynamically change the size
- Performance vs. Fairness
  - Capacity-based model
  - Capability-based model



## **Road Map**





# **Dynamic MapReduce Clusters**

### • Complex resource management

- Single / multiple physical clusters
- Placement and scheduling policies
- Change resource allocations at runtime
- Data management issues
- MR-cluster structure: *data replication vs. data locality* **Core nodes** Transient nodes
  - Execute tasks and store data locally
  - Replication required when removed



- > Execute tasks, do not store data
- Data transfers to read/write data





# **Resizing Mechanism**

S<sub>grow</sub>Ţ

*Question:* Given an MR-cluster, how can you tell if it is overloaded or underloaded?

- ullet
- Monitor the MR cluster utilization:  $F_{\min} \leq \frac{\# tasks}{\# slots} \leq F_{\max}$

\$S<sub>shrink</sub>

- Grow-Shrink Policy (GSP) with transient nodes ۲
  - > Size of grow and shrink steps: **S**<sub>grow</sub> and **S**<sub>shrink</sub>

S<sub>grow</sub> **↑** 

Baseline policies: grow with core nodes (GGDP) or grow with transient nodes (GGP)

Timeline



∫S<sub>shrink</sub>

# **System Prototype**

### Koala Grid Scheduler

- Enables processor and data co-allocation
- Implements placement and scheduling policies
- Application types: cycle-scavenging, workflows, OpenMPI

### Koala and MapReduce

- Developed an MR-Runner module to schedule MR jobs
- Provides isolated MR-clusters on a per-user basis
- Koala mechanism for resizing the MR-clusters
- MR jobs submissions transparent to Koala

### DAS-4 Infrastructure

- Real-world experiments on a multicluster system
- 6 clusters, over 1600 cores, 150 machines, 180 TB, 1-10 Gbit/s











### 50 GB data set

• Wordcount scales better than Sort on transient nodes



# **Resizing Performance**



J Delft

# **Road Map**





# **Workload Analysis**

*Question:* Which are the major MapReduce use cases?

- Google, Facebook, Yahoo!, Cloudera, Microsoft
  - ➢ Findings from 12 published production traces
  - Our analysis of other 4 production traces
- Complex Workload
  - > Large variations in job submissions rates
  - 90% of the jobs in all traces process and generate less than 1 GB, and complete in under 1 minute
  - > For large jobs, variations in job sizes vs. job durations
  - Our PDS group analyzes 15 TB of BitTorrent logs with MapReduce



# **Benchmarking Tool**

- Real-world applications
  - Text processing, web searching, machine learning
- Trace-based workloads
  - Analysis and modeling of traces from production clusters

### BTWorld use case

- Complex MR workflow
- > 14 Pig queries / 33 MR jobs
- Aggregations, selections, joins projections



Makespan for different data sets

# **Road Map**





# **Fair-Sharing Across Multiple Users**

Question: Given multiple MR-clusters, how can you tell if one is working better than another ?

- Schedule and provision concurrent MR-clusters
- Differentiate users and converge to a division of resources such that they get similar performance
- Weighted proportional allocations:
  - Take snapshots in time of the queue sizes
  - Maintain a history of finished jobs



# **Provisioning Policies**

# *Question:* Can we obtain better performance with the dynamic MR-clusters?

- Data is hard to move
  - Aprox. 3 h to transfer 1 TB between HDFS and the local storage (900 Mbps write speed)
  - Removing a node with 100 GB makes ~ 6 failed jobs (1 Gbit/s Ethernet, avg. map task duration 24 s, most jobs have less than 150 tasks)
- Explore a large space of policies:
  - Policies for establishing the weights (fair-shares)
  - Policies for growing (core or transient nodes, single or multiple clusters)
  - Policies for shrinking (preemptive or non-preemptive)



# **Performance Model**

*Question:* Which are the performance boundaries of the MR processing system?

- Analytical and statistical methods
- Metrics:
  - ➢ Fairness − users get similar performance
  - Elasticity dynamic MR clusters
  - > Performace isolation multiple MR clusters
  - Velocity of data processing
  - Adaptivity to data explosion





# **Road Map**





# **Optimize the MapReduce System**

*Question:* Are the results obtained so far relevant for the large domain of data-processing systems?

- Provisioning policies with different optimization targets
- Incorporate knowledge about the workloads in scheduling and provisioning decisions
- Release the extended system with the full functionalities
- Investigate the applicability to other programming models and infrastructures



# **More Information**

- Team: D. Epema, A. Iosup, M. Capotă, T. Hegeman, N. Yigitbasi, L. Fei,...
- PDS publication database
  - www.pds.ewi.tudelft.nl/research-publications/publications
- Home pages
  - www.pds.ewi.tudeltf.nl/ghit
  - www.pds.ewi.tudelft.nl/epema
  - www.pds.ewi.tudelft.nl/~iosup
- Web sites:
- KOALA: <u>www.st.ewi.tudelft.nl/koala</u>





