
1

Tyrex: Size-based Resource Allocation
in MapReduce Frameworks

CCGRID 2016

Bogdan Ghit and Dick Epema

2

About me
PhD candidate at TU Delft, advised by Dick Epema.

Thesis topic: optimizing the performance of data analytics
frameworks.

Member of the DS group (see tag cloud below).

FAWKES

http://ds.ewi.tudelft.nl/

3

A job model for datacenters

Task

Task

Task

Task

Task

Task

Task

Task

MAP
PHASE

SHUFFLE
PHASE

REDUCE
PHASE

4

Datacenter workloads are heavy-tailed

•  Very variable job sizes:
 - Google, Facebook, Bing, Yahoo! clusters.

•  Our experience with BTWorld:
 - Less than 15% of the jobs account for 80% of the total load.
 - More than 65% of the jobs complete in a minute.

•  Short jobs experience long delays due to large jobs
ahead of them.

Bogdan Ghit et. al., “V for Vicissitude: The Challenge of Scaling Complex Big Data
Workflows”, SCALE Challenge Winner, 2014.

5

MapReduce schedulers
Performance:
-  Locality: Delay scheduler [EuroSys’10], PAC-Man [NSDI’12]
-  Stragglers: Late [OSDI’08], Hopper [SIGCOMM’15].

Performance & fairness: This talk!

Tyrex

Fairness:
-  Resource-sharing: FAIR scheduler [EuroSys’10], Mesos

[NSDI’11], Fawkes [Sigmetrics’14], Koala-F [CCGrid’16]
FAWKES

6

This work

(1)  Formulate the goals of our scheduler.
Job slowdown variability.

(2) Design of Tyrex.

Two scheduling policies.

(3) Experimental evaluation on the DAS.
Job slowdown performance.

7

Job slowdown variability

Waiting
tasks

Running
tasks

Busy
slots

•  Job slowdown = response time

•  Job slowdown variability: 95th percentile/median.

Busy system Empty system

/ wall-clock time.

8

The queueing model

Partition 1 Partition K ...Partition 2

•  Resource partitioning: avoid job interference.

•  Timer-based job migration: distinguish job sizes.

9

Design considerations

Inspired by the TAGS policy, but with three
key differences:

1.   Datacenter environment

2. Complex job model

3. Work-conserving system

M. Harchol-Balter, “Task assignment with unknown durations”,
Distributed Computing Systems, 2001.

10

System model

•  Job migration with no overhead.

11

The StaticTAGS policy

•  Move a job to the next queue when it exceeds the
timer using capacity from the current partition.

CPU
slots

HDFS

Job
queues

12

Identifying long jobs (1/2)

Lp = young jobs

Job size
p 0

Rp = old jobs

13

Identifying long jobs (2/2)

•  Optimal cutoff point: balanced squared CVs.
•  We aim for a squared CV in Lp that is lower than 2.
•  No need for more than 2 partitions.

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000
Cutoff point [s]

Sq
ua

re
d

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
Lp Rp

14

The DynamicTags policy

2. Determine the optimal cutoff point.

1.  Find partitions with variable job sizes.

3. Set the timer to the optimal cutoff point.

Pk

Pk Pk+1

Pk PN P1

15

Experimental setup

•  DAS-4 multicluster system
-  20 dual-quad core nodes, 24 GiB, Infiniband.
-  Hadoop 1.0, 4 map slots, 2 reduce slots per node.
-  Tyrex with two partitions.

•  Applications
-  CPU intensive: Wordcount, PiEstimator
-  Disk intensive: Sort, Grep
-  Complex workflows: BTWorld

16

MapReduce workloads (1/2)

In particular, if the distribution of job sizes is heavy-tailed then
the residual lifetime of young jobs is stochastically smaller
than the residual lifetime of old jobs. As a consequence, the
DYNAMICTAGS policy seeks in any partition Pk a cutoff point
p so that Pk only serves young jobs that are likely to leave the
system soon. In contrast, old jobs with larger residual lifetimes
are migrated to the next partition.

V. EXPERIMENTAL SETUP
In this section we present the workloads and the configura-

tion of the infrastructure we use for the experimental evaluation
of TYREX. To design our workloads we use a comprehensive
set of representative MapReduce applications, including both
standard benchmarks and complex, real-world workflows. In
this paper we take an experimental approach and we evaluate
TYREX by means of experiments in a real-world multicluster
system. The total time used for experimentation exceeded
20,000 hours system time.

Standard benchmarks. The Hadoop distribution provides
a set of synthetic benchmarks abundantly used in performance
evaluation studies of MapReduce frameworks. We use the
following applications from Hadoop: Wordcount, PiEstimator,
Sort, and Grep. Wordcount and PiEstimator are CPU-intensive
applications used to retrieve the number of occurences of each
unique word in a given set of input files and to estimate the real
value of ⇡ using the quasi-Monte Carlo algorithm. In contrast,
Grep and Sort are disk intensive applications used to search for
a given pattern in the input files and to generate the content of
the input files in non-decreasing order.

Complex workflows. BTWORLD is a complex and very
challenging MapReduce-based logical workflow which we
designed to observe the evolution of the global-scale peer-
to-peer system BitTorrent [18]. The workflow consists of 26
MapReduce jobs with different resource bottlenecks (CPU,
memory, or disk) and is used for processing monitoring data
collected periodically from the BitTorrent system. We use 9
BTWORLD jobs which compute answers to a large number of
questions related to the operation of BitTorrent (e.g., How does
a tracker evolve in time?, How many active hashes are in the
system?, Which are the most popular hashes and swarms?).
BTWORLD jobs process a multi-column input dataset that
contains timestamped, per-tracker statistics of the BitTorrent
content: the number of users with fully and partially downloaded
content, and the number of completed user downloads.

MapReduce workloads. In our experiments we will use
three workloads that we create using the Wordcount, PiEsti-
mator, Sort, Grep, and BTWORLD applications and that are
differentiated by their variability of job sizes. Each of these
workloads consists of a stream of 300 jobs with a Poisson
arrival process. In our evaluation of TYREX we designed all
three workloads to impose an average load of 70%.

The three workloads we create are called HVW, MVW, and
LVW for High/Medium/Low Variability Workload, and they
have, going from one to the next, decreasing squared CV values
of their job size distributions. In Figure 5(a) we distinguish
four ranges of job sizes to show the job size distributions in
our workloads: “tiny” (< 1 minute), “short” (1-10 minutes),
“medium” (10-100 minutes), and “large” (> 100 minutes).
In all workloads there is a large fraction of tiny and short
jobs combined (more than 60%). In Figure 5(b), we show the
fractions of the total CPU time consumed by all jobs together
with a cutoff point as defined in Section IV-D of 1, 10, and

0.00

0.25

0.50

0.75

1.00

<1 1−10 10−100 >100
Job size [min]

Fr
ac

tio
n

of
 jo

bs

Workload
HVW
MVW
LVW

(a)

0.00

0.25

0.50

0.75

1.00

<1 <10 <100
Job size [min]

Fr
ac

tio
n

of
 C

PU
 ti

m
e

(b)

Fig. 5. Comparing the workloads: (a) the job size distributions, and (b) the
sum of the CPU time of all jobs up to 1, 10, and 100 minutes as a fraction of
the total CPU time.

100 minutes, respectively. For example, even for the HVW
workload, if the timer of partition P1 is set to 10 minutes, the
fraction of the load processed by partition P1 is only 10%. Our
workloads are representative for a broad range of computer
systems workloads, having squared CV values in the range
of 4 to 20 – the standard TPC benchmarks for evaluating
the performance of computer systems exhibit squared CV
values in this range [26]. As heavy-tailed workloads fit recent
measurement of MapReduce production clusters [20], the HVW
and MVW workloads with high variability of job sizes are more
interesting in our evaluation.

TABLE II. SUMMARY OF THE EXECUTION OF THE HVW, MVW, AND
LVW WORKLOADS.

Statistics HVW MVW LVW
Total jobs 300
Squared CV 20 10 4
BTWORLD jobs 33 45 10
Total maps 6,139 11,866 30,576
Total reduces 788 1,368 3,089
Temporary data [GB] 573 693 1,062
Persistent data [GB] 100 92 303
Total CPU time [h] 63.6 124.6 306.9
Total runtime [h] 3.51 3.98 5.31

To understand in more detail the structure of our workloads,
we show in Table II execution summaries when all jobs are
executed sequentially in an empty 20-node Hadoop framework.
HVW spans more than 7,000 (map and reduce) tasks in total
and requires more than 60 h CPU time. MVW has more than
12,000 (map and reduce) tasks in total and requires twice as
much CPU time. The former two workloads are comparable in
the amount of persistent data generated and the total runtime in
an empty system. LVW consists of more than 33,000 (map and
reduce) tasks, requires five times more CPU time than HVW,
and generates three times more persistent data than both HVW
and MVW.

DAS-4 deployment. The DAS-4 [2] cluster we use in our
experiments has 20 dual-quad-core compute nodes with 24 GiB
memory per node and 50 TB total storage. The DAS-4 nodes are
connected through 1 Gbit/s Ethernet (GbE) and 20 Gbit/s QDR
InfiniBand (IB) networks. We use Hadoop-1.0.0 over InfiniBand
and we configure at each node 6 map slots, 2 reduce slots, and
3 GiB memory per running task. The HDFS uses a virtual disk
device with RAID-0 software and 2 physical devices with 2 TB
storage in total per node.

Baseline policies. We contrast TYREX with two state-of-the-
art scheduling algorithms in data-intensive frameworks – FIFO

•  Stream of 300 jobs with Poisson arrivals.
•  Average system load: 70%.

17

MapReduce workloads (2/2)

•  Large fraction of short jobs in all workloads.

0.00

0.25

0.50

0.75

1.00

<1 1−10 10−100 >100
Job size [min]

Fr
ac

tio
n

of
 jo

bs
Workload

HVW
MVW
LVW

18

StaticTags: setting capacities and timers

● ● ● ●

0

250

500

750

1000

10 20 30 40
Capacity of partition 1 [%]

Ti
m

er
 [s

]

● HVW
MVW
LVW

•  Optimal timer is insensitive to the partition capacity
when the job size variability is high.

•  We set the capacity of partition 1 to 30%

19

DynamicTags: evolution of dynamic timers

●●●● ●●●●● ●●●●●●●
●●●● ●●●

●
●●●●

● ●
●●●● ●●●

●
●●●● ●

●
●0

500

1000

1500

2000

2500

3000

0 600 1200 1800
Time [s]

Ti
m

er
 [s

]

● HVW MVW LVW

•  Low values when the job size variability is high.
•  Increasingly wider and higher ranges for MVW and LVW.

20

HVW MVW LVW
Workload

Partition 1 Partition 2

Fraction of jobs across partitions

•  Both migrate more jobs to partition P2 as the workload
variability decreases.

•  DynamicTags is more conservative than StaticTags.

0.00

0.25

0.50

0.75

1.00

HVW MVW LVW
Workload

Fr
ac

tio
n

of
 jo

bs

Partition 1 Partition 2

StaticTags DynamicTags

21

Job slowdown variability

•  Similar results for StaticTags and DynamicTags
•  Very good performance for HVW with both values below 2.

HVW MVW LVW
Workload

Median
slowdown

Slowdown
variability

HVW MVW LVW
Workload

Median
slowdown

Slowdown
variability

StaticTags DynamicTags

0

1

2

3

4

22

Improvements from Tyrex (1/2)

•  Tyrex cuts in half the job slowdown variability.
•  Tyrex maintains roughly the same median job slowdown.

0

1

2

3

4

5

FIFO FAIR StaticTags DynamicTags
Policy

Median
Slowdown

Slowdown
Variability

HVW

23

Improvements from Tyrex (2/2)

•  Much smaller interquartile ranges and outliers with Tyrex.

HVW

24

Conclusions

•  Main elements: resource partitioning and timers.

•  Near-optimal performance when using dynamic timers.

•  Tyrex cuts in half the job slowdown variability and preserves
the median job slowdown.

Partition 1 Partition K ...Partition 2

25

http://ds.ewi.tudelft.nl/

BOGDAN GHIT
(Venue A) 10:00

BOGDAN GHIT
(Venue C) 10:30

Tuesday

A. Kuzmanovska
(Venue A) 16:00

TUDelft Group at CCGrid 2016

Thursday

A. Kuzmanovska
(Venue B) 14:00

26

Backup slides

27

Unbalanced load across partitions

0.00

0.25

0.50

0.75

1.00

HVW MVW LVW
Workload

Sy
st

em
 lo

ad
Partition 1 Partition 2

28

Good performance under high load

