Checkpointing In-Memory Data Analytics
Applications with Panda

Bogdan Ghit
Joint work with Dick Epema

TU Delft

1(!U Delft Delft Universi ity of Technology 1




About me
PhD degree from TU Delft, advised by Dick Epema

Thesis topic on scheduling data analytics frameworks
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Call for Efficiency

Large-scale data processing is now widespread

Z

=7
TUDelft 3



Spark Scheduling Model
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In-memory parallel computation
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Resilient but Inefficient by Design

Impact of a single failure
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Recomputation vs. Checkpointing

Failed task
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m Rate (peryear Machines lost m

Overheating 1-2 days
PDU 1 500-1000 6h
Network 1 5% 2 days

rewiring

Racks 20 40-80 1-6 h

Servers 1000 - -
HDD 1000s - -
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Where We Want to Go
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Frequency of checkpointing

Reduce the checkpointing problem to a task-selection problem
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Trace
analysis
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Stage selectivity spans

several orders of magnitude. Greedy

Resource-aware

Task runtimes fit a Pareto Size-based
distribution with shape 1.5.
Task properties Three policies
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Greedy Checkpointing

Task selection

II « As many tasks as the budget allows

_____________ Stop - Inflight checkpointing tasks are allowed to finish

llllllll W checkpointing
i€

Budget The checkpointing budget
exceeded » Limits the checkpointing cost in each stage
« Set to a fraction of the total stage input
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BTWorld _
1004 / Task selection

« Straggler tasks that run very slow
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T p’ A - « Build up a history of task runtimes per job
Ratio of outlier duration « Tasks that run m times longer than the median

to the median task runtime
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Greedy versus Size-based
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Resource-aware Checkpointing

Task selection
« Estimated benefit outweighs the checkpointing cost

Input
Recovery time

Task runtime

« Checkpoint tasks if: p (T + R) > C, p is the likelihood of failure
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Estimating the Recomputation Cost

Single recovery path
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Multiple recovery paths
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Estimating the Checkpointing Cost

Checkpointing time depends on:
* Output size and write throughput
« Contention due to other tasks being checkpointed

Approximate method:
« Checkpoint the early waves of each stage
« Partial distribution of tasks checkpointing times
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Experiment 1

How does the performance of our policies compare
with periodic checkpointing?

Experiment details:
20-machine cluster
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Takeaway: Greedy and Aware deliver constant job runtimes for
the complete range of failures.
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Experiment 2

What is the impact of the lineage length?

Experiment details:

* 5-machine cluster
« PageRank (1 GB)
« Aware policy
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Takeaway: The Aware policy performs very well irrespective of
the lineage length of the application.
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In-memory data analytics require checkpointing,
checkpointing is worthwhile if you do it right,

using Panda is the right way to do it!

% Bogdan Ghit and Dick Epema, “Better Safe than Sorry: Grappling with Failures of
TUDelft In-Memory Data Analytics Frameworks”, ACM HPDC 2017
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