
Fast and Reliable Apache 
Spark SQL Releases

DataWorks Summit Barcelona

March 21st, 2019

1



2

               NICOLAS POGGI

Databricks, Performance Engineer
• Spark benchmarking

Barcelona Supercomputing - Microsoft Research Centre
• Lead researcher ALOJA project
• New architectures for Big Data

BarcelonaTech (UPC), PhD in Computer Architecture
• Autonomic resource manager for the cloud
• Web customer modeling

About us
      BOGDAN GHIT

Databricks, Software Engineer
• Spark performance

IBM T.J. Watson Research Center
• Research intern on big data
• Bid advisor for cloud spot markets

Delft University of Technology, PhD in Computer Science
• Resource management in datacenters
• Performance of Spark, Hadoop



Databricks ecosystem

3

ToolsDevelopers

DBR Cluster Manager

Infrastructure Customers



Beta
Full Support
Marked for deprecation 

Deprecated

Databricks runtime (DBR) releases

Our goal is to make releases automatic and frequent

Feb’18 Aug’18 Nov’18 Apr’19 Jul’19 Oct’19 Feb’20

* dates and LTS-tag new releases are subject to change

Spark 3.0

Spark 2.3

Spark 2.4

Spark 2.4

DBR 6.0*

DBR 4.3

DBR 5.0

DBR 5.3-LTS* 



Apache Spark contributions

5

Hundreds of commits monthly to the Apache Spark project

N
um

be
r o

f c
om

m
its

At this pace of development, mistakes are bound to happen



Where do these contributions go?

6

Scope of the testing

Developers put a significant engineering effort in testing 

Q
ue

ry

Input data

Config
urat

ion

Over 200 built-in functions



Yet another brick in the wall

Unit testing is not enough to guarantee correctness and performance

Unit testing

Integration

E2E

Micro
Benchmarks

Plan
stability

Fuzz
testing

Macro
benchmarks

Stress
testing

Customer
workloads

Failure
testing



8

Continuous integration pipeline

New artifacts Metrics

- Correctness
- Performance

Test

Alerts

- Merge
- Build

Dev

- Rules
- Policies

Analyze



9

Classification and alerting

- Impact
- Scope
- Correlation
- Confirm?

Failure

Regression
- Minimize
- Drill-down
- Profile
- Compare
- Validate

Events Re-test Alert

Classify Root-cause

Correctness

Performance



10

Failure

Regression

Events

Re-test

Alert

Classify Root-cause

Correctness

Performance

Correctness



How SQLite is tested
Anomaly testing

Out-of-memory testing
IO-error testing
Crash testing
Compound failure tests

Fuzz testing

SQL Fuzz
Malformed database files
Boundary value tests

How SQLite Is Tested: https://www.sqlite.org/testing.html

https://www.sqlite.org/testing.html


SQL AST

DataFrame

Unresolved 
Logical Plan Logical Plan Optimized 

Logical Plan RDDsSelected 
Physical Plan

Analysis
Logical

Optimization
Physical
Planning

Co
st

 M
od

el

Physical 
Plans

Code
Generation

Catalog

Spark SQL behind the scenes

SQL operators can be represented as trees
Phases of transformation prepare the trees for execution
Rules can be applied once or to fix-point



Random query generation

13

Query profile Model 
translator

Spark
Query

Postgres
Query

vs

vs



...
...

DDL and datagen

14

...

...

BigIntBoolean

Timestamp

Decimal

FloatInteger

SmallInt

String
Choose a data type

Random number of rows

Random number of columns

Random number of tables

Random partition columns



Recursive query model

15

SQL Query

WITH

FROMUNION

SELECT

Functions

Constant

GROUP BY
ORDER BY

Table

Column
Alias

Query

Clause

Expression

JOIN

WHERE



Probabilistic query profile
Independent weights
• Optional query clauses

Inter-dependent weights
• Join types
• Select functions

ORDER BY
UNION GROUP BY WHERE

10%

10%

50%
10%



Coalesce flattening (1/4)
SELECT COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3) AS int_col,
      IF(NULL, VARIANCE(COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)),       
      COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)) AS int_col_1,
      STDDEV(t2.double_col_2) AS float_col,
      COALESCE(MIN((t1.smallint_col_3) - (COALESCE(t2.smallint_col_3, t1.smallint_col_3,         
      t2.smallint_col_3))), COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3),       
      COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)) AS int_col_2
FROM table_4 t1
INNER JOIN table_4 t2 ON (t2.timestamp_col_7) = (t1.timestamp_col_7)
WHERE (t1.smallint_col_3) IN (CAST('0.04' AS DECIMAL(10,10)), t1.smallint_col_3)
GROUP BY COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)

 

Small dataset with 2 tables of 5x5 size
Within 10 randomly generated queries

Error: Operation is in ERROR_STATE



Coalesce flattening (2/3)
Aggregate

Project

Join

FILTERSCAN foo

SCAN bar

foo.id IN 
(CAST(‘0.04’ AS DECIMAL(10, 10)), foo.id)

foo.ts  = bar.ts

COALESCE(COALESCE(foo.id, foo.val), 88)

GROUP BY COALESCE(foo.id, foo.val)



Coalesce flattening (3/4)
Aggregate

Project

Join

FILTERSCAN t1

SCAN t2

foo.id IN 
(CAST(‘0.04’ AS DECIMAL(10, 10)), foo.id)

foo.ts  = bar.ts

COALESCE(COALESCE(foo.id, foo.val), 88)

COALESCE(foo.id, foo.val)



Coalesce flattening (4/4)
Aggregate

Project

SCAN foo

Minimized query:
SELECT 
   COALESCE(COALESCE(foo.id, foo.val), 88)
FROM foo 
GROUP BY 
   COALESCE(foo.id, foo.val)

Analyzing the error
● The optimizer flattens the nested coalesce calls
● The SELECT clause doesn’t contain the GROUP BY expression
● Possibly a problem with any GROUP BY expression that can be optimized



Lead function (1/3)
SELECT (t1.decimal0803_col_3) / (t1.decimal0803_col_3) AS decimal_col, 

        CAST(696 AS STRING) AS char_col, t1.decimal0803_col_3, 

       (COALESCE(CAST('0.02' AS DECIMAL(10,10)), 

                 CAST('0.47' AS DECIMAL(10,10)), 

                 CAST('-0.53' AS DECIMAL(10,10)))) + 

       (LEAD(-65, 4) OVER (ORDER BY (t1.decimal0803_col_3) / (t1.decimal0803_col_3),                                       

                 CAST(696 AS STRING))) AS decimal_col_1, 

                 CAST(-349 AS STRING) AS char_col_1

FROM table_16 t1
WHERE (943) > (889)

Error: Column 4 in row 10 does not match: 
  [1.0, 696, -871.81, <<-64.98>>, -349] SPARK row 
  [1.0, 696, -871.81, <<None>>, -349] POSTGRESQL row



Lead function (2/3)

Project

FILTER

SCAN foo

WHERE expr

COALESCE(expr) + LEAD(-65, 4) OVER ORDER BY expr



Lead function (3/3)

Project

FILTER WHERE expr

COALESCE(expr) + LEAD(-65, 4) OVER ORDER BY expr

Analyzing the error
● Using constant input values breaks the behaviour of the LEAD function
● SPARK-16633: https://github.com/apache/spark/pull/14284

SCAN foo



Query operator coverage analysis

In 15m (500 queries), we reach the max coverage of the framework



25

Performance

25

Failure

Regression

Events

Re-test

Alert

Classify Root-cause

Correctness

Performance



Benchmarking tools

• We use spark-sql-perf public library for 
TPC workloads
• Provides datagen and import scripts
•  local, cluster, S3
• Dashboards for analyzing results

• The Spark micro benchmarks
• And the async-profiler

• to produce flamegraphs

26

https://github.com/databricks/spark-sql-perf

Source: 
http://www.brendangregg.com/flamegraphs.html

CPU Flame Graph

https://github.com/databricks/spark-sql-perf
http://www.brendangregg.com/flamegraphs.html


• Will be based on Spark 2.4
• once released

• Started testing early Aug
• on a snapshot

• First experimental image
• showed 15% perf regression

• Report contained a long list 
of queries to look into.

15%

-------------  journey



Per query drill-down: q67 

First, scope and validate

• in 2.4-master (dev) compared 
• to 2.3 in DBR 4.3 (prod)

Query 67:  18% regression From 320s to 390s



Q67 executor profile for  Spark 2.4-master



Side-by-side 2.3 vs 2.4: find the differences

Spark 2.3 Spark 2.4



Framegraph diff zoom Red slower   White new

 unsafe/Platform.copyMemory()

 unsafe/BytesToBytesMap.safeLookup

 New: hash/Murmur3_x86_32.hashUTF8String()

 Murmur3_x86_32.hashUnsafeBytesBlock()  

Look for hints:
- Mem mgmt
- Hashing
- unsafe



Root-causing

Results:
• Spark 2.3: hashUnsafeBytes() -> 40µs
• Spark 2.4  hashUnsafeBytesBlock() -> 140µs

• also slower UTF8String.getBytes()

Microbenchmark for UTF8String

GIT BISECT

1.)

2.)
3.)



It is a journey to get a release out

DBR and Spark testing and performance are a continuous effort
• Over a month effort to bring performance to improving 

TPC-DS 2.4-master vs. 2.3 at SF 1000

15%

5%

< 0%



… a journey that pays off quickly

Query times have improved over 2X 
in the Spark 2.x branch measured in the Databricks platform

Note: both 2.4.1 and 3.0.0 are not released yet



Conclusion

Spark in production is not just the framework
Unit  and integration testing are not enough

We need Spark specific tools to automate the process
to ensure both correctness and performance



Thanks!
Fast and Reliable Apache Spark SQL Releases

March 2019               

36

Test AnalyzeDev

 Feedback:  {Nico.Poggi, Bogdan.Ghit}@databricks.com


