Fast and Reliable Apache Spark SQL Releases

DataWorks Summit Barcelona

About us

BOGDAN GHIT

Databricks, Software Engineer

Spark performance

Databricks, Performance Engineer

Spark benchmarking

IBM T.J. Watson Research Center

- Research intern on big data
- Bid advisor for cloud spot markets

Delft University of Technology, PhD in Computer Science

- Resource management in datacenters
- Performance of Spark, Hadoop

•

NICOLAS POGGI

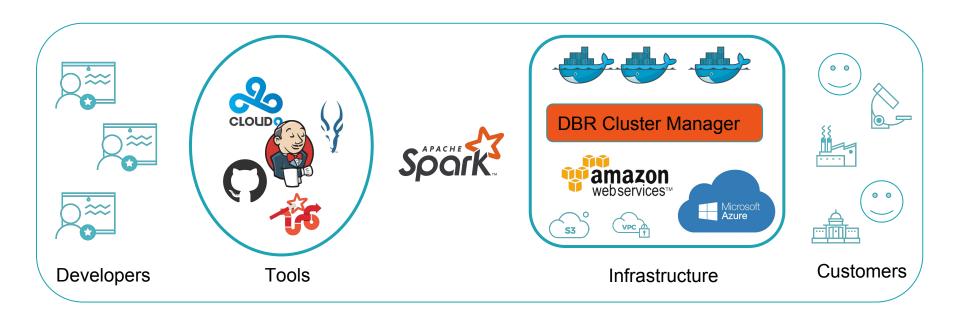
Barcelona Supercomputing - Microsoft Research Centre

- Lead researcher ALOJA project
- New architectures for Big Data

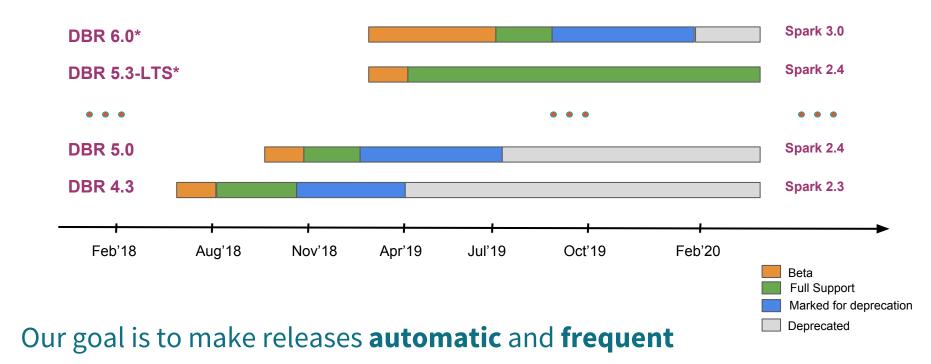
BarcelonaTech (UPC), PhD in Computer Architecture

- Autonomic resource manager for the cloud
- Web customer modeling

Databricks ecosystem

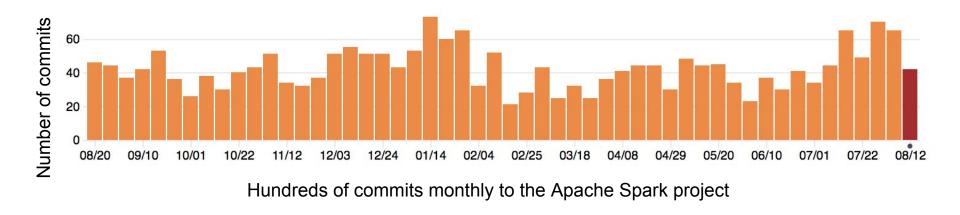


Databricks runtime (DBR) releases



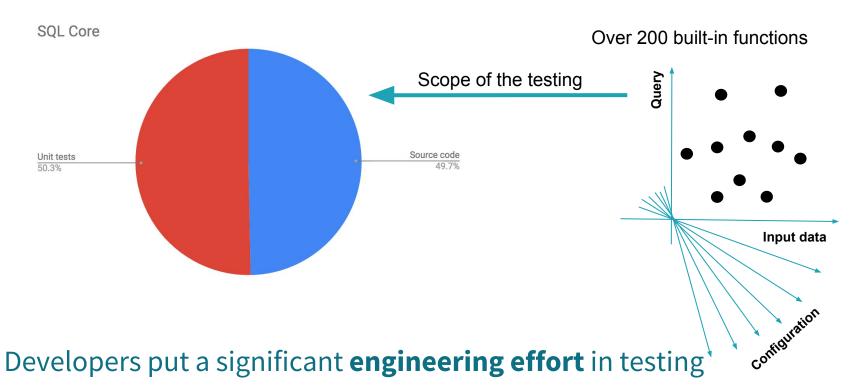
^{*} dates and LTS-tag new releases are subject to change

Apache Spark contributions

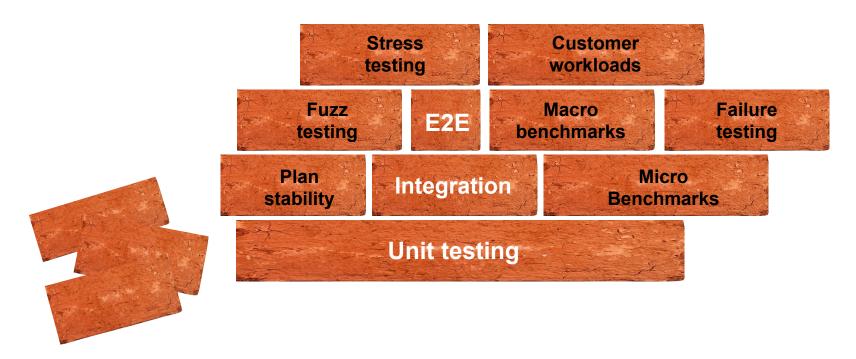


At this pace of development, **mistakes** are bound to happen

Where do these contributions go?

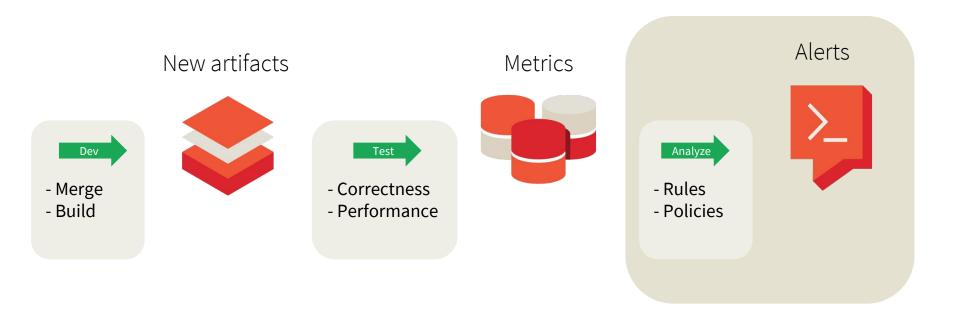


Yet another brick in the wall

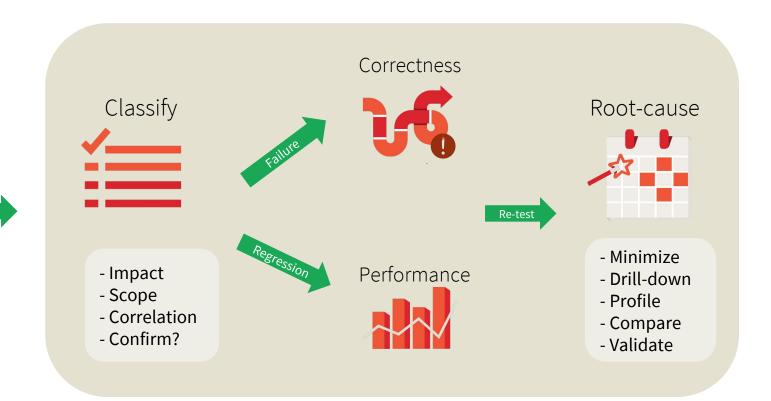


Unit testing is not enough to guarantee correctness and performance

Continuous integration pipeline



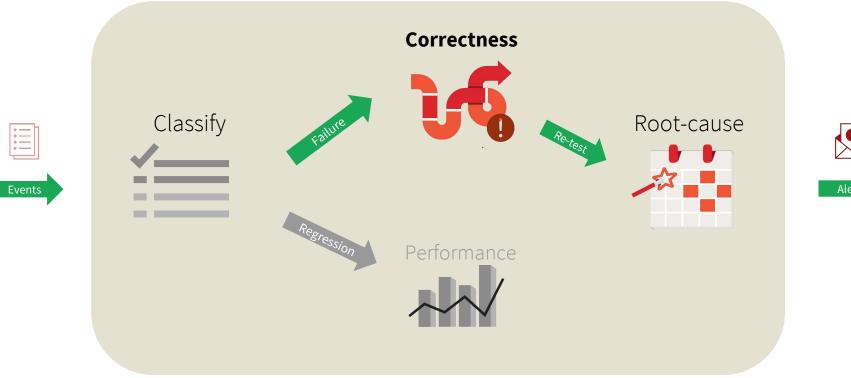
Classification and alerting



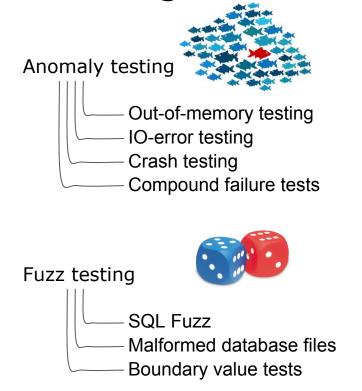
Events

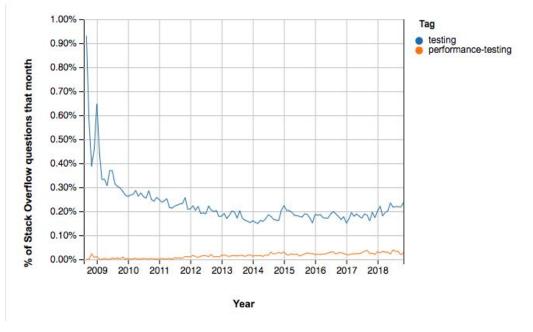
Alert

Correctness

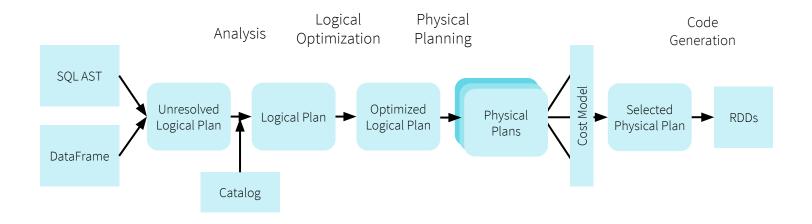


How SQLite is tested



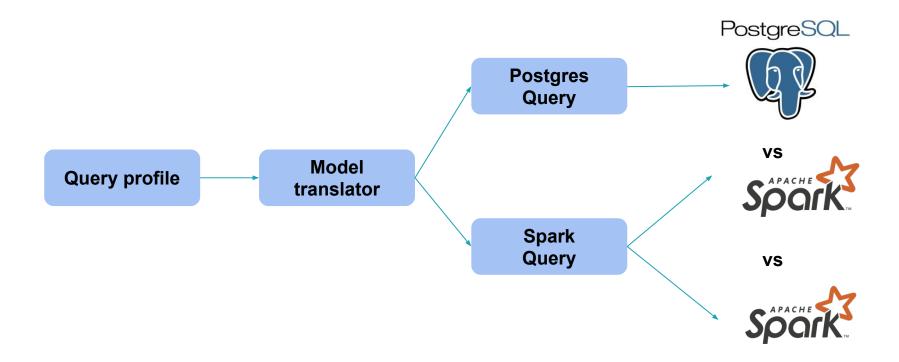


Spark SQL behind the scenes



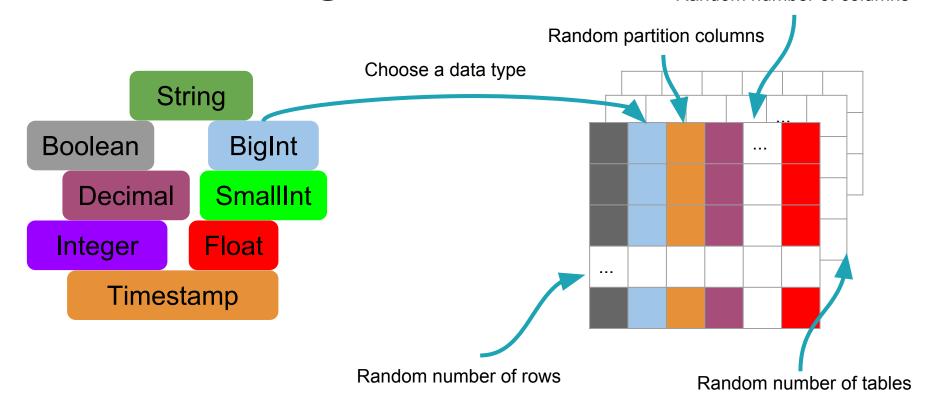
SQL operators can be represented as trees Phases of transformation prepare the trees for execution Rules can be applied once or to fix-point

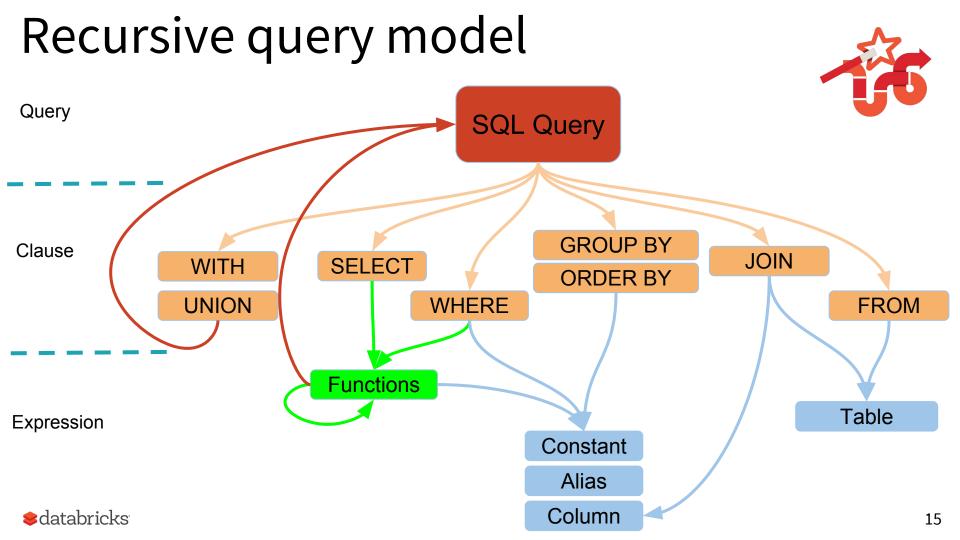
Random query generation



DDL and datagen

Random number of columns

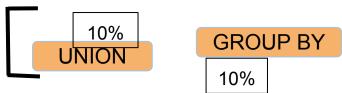


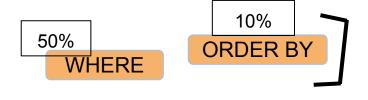


Probabilistic query profile

Independent weights

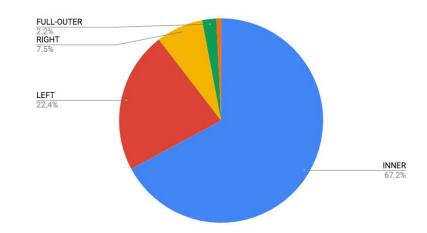
Optional query clauses





Inter-dependent weights

- Join types
- Select functions



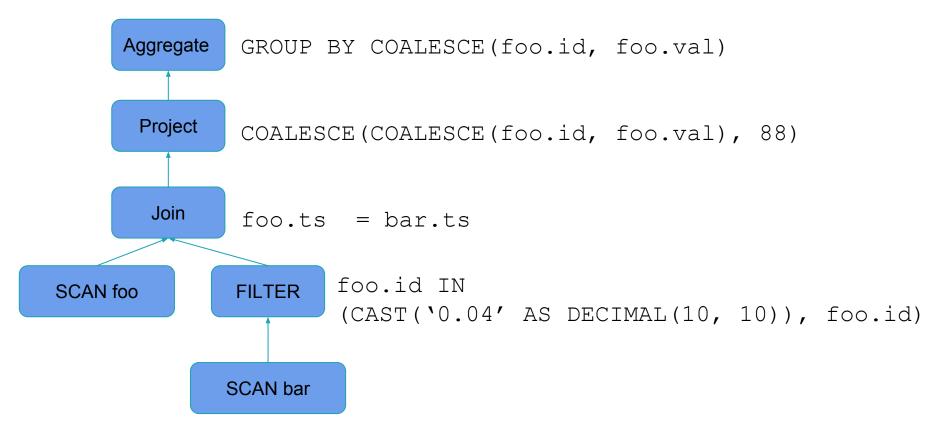
Coalesce flattening (1/4)

```
SELECT COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3) AS int_col,
    IF(NULL, VARIANCE(COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)),
    COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)) AS int_col_1,
    STDDEV(t2.double_col_2) AS float_col,
    COALESCE(MIN((t1.smallint_col_3) - (COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3))), COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3),
    COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)) AS int_col_2
FROM table_4 t1
INNER JOIN table_4 t2 ON (t2.timestamp_col_7) = (t1.timestamp_col_7)
WHERE (t1.smallint_col_3) IN (CAST('0.04' AS DECIMAL(10,10)), t1.smallint_col_3)
GROUP BY COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)
```

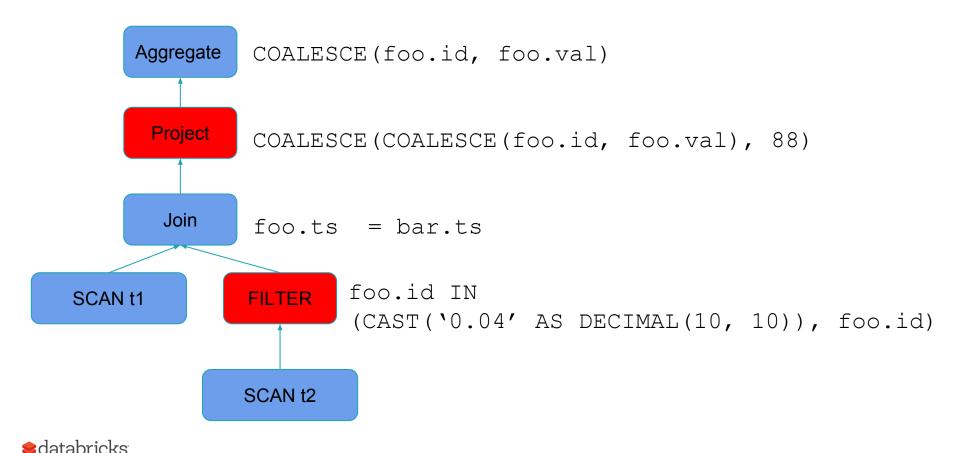
Small dataset with 2 tables of 5x5 size Within 10 randomly generated queries

Error: Operation is in ERROR_STATE

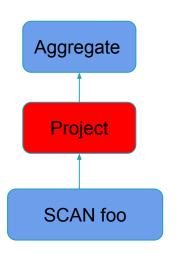
Coalesce flattening (2/3)



Coalesce flattening (3/4)



Coalesce flattening (4/4)



Minimized query:

```
SELECT

COALESCE(COALESCE(foo.id, foo.val), 88)

FROM foo

GROUP BY

COALESCE(foo.id, foo.val)
```

Analyzing the error

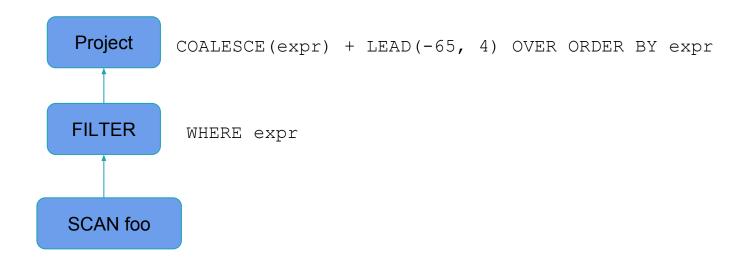
- The optimizer flattens the nested coalesce calls
- The SELECT clause doesn't contain the GROUP BY expression
- Possibly a problem with any GROUP BY expression that can be optimized

Lead function (1/3)

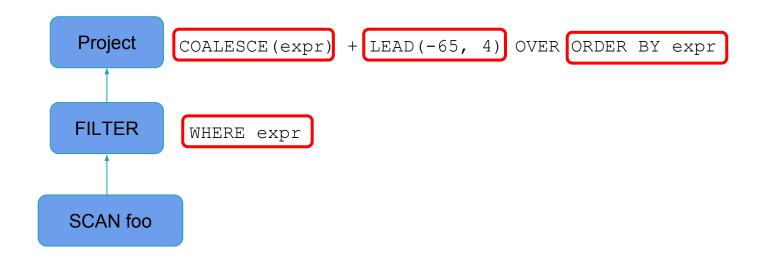
Error: Column 4 in row 10 does not match:

```
[1.0, 696, -871.81, <<-64.98>>, -349] SPARK row [1.0, 696, -871.81, <<None>>, -349] POSTGRESQL row
```


Lead function (2/3)



Lead function (3/3)

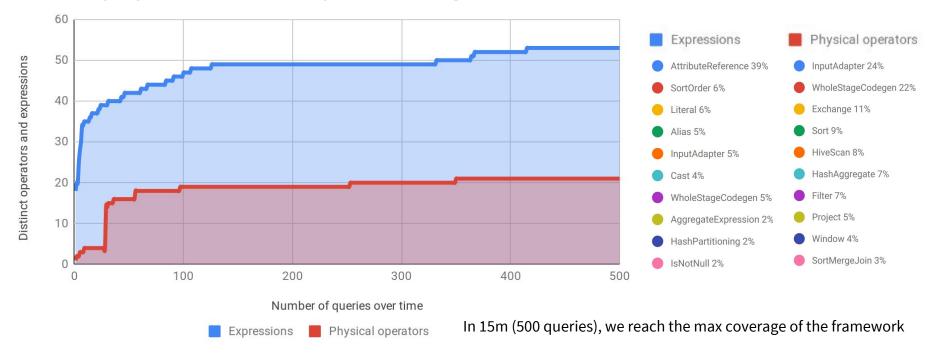


Analyzing the error

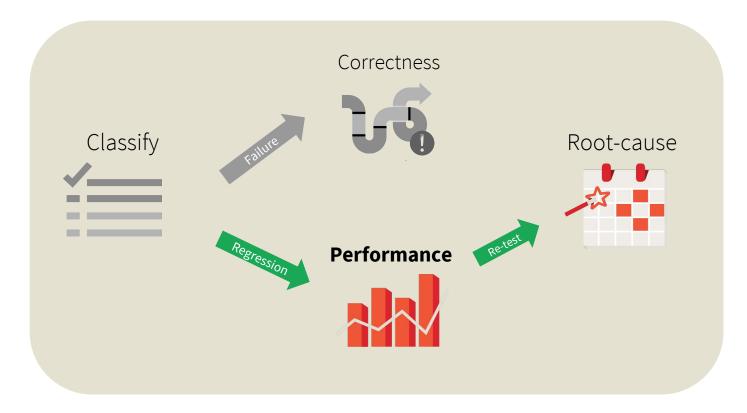
- Using constant input values breaks the behaviour of the LEAD function
- SPARK-16633: https://github.com/apache/spark/pull/14284

Query operator coverage analysis

Random query execution distinct operator coverage



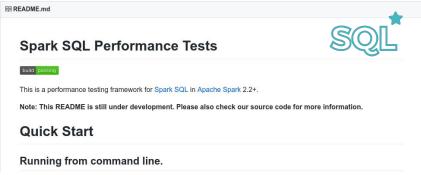
Performance



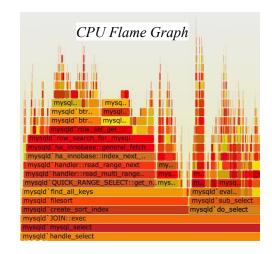
Events

Benchmarking tools

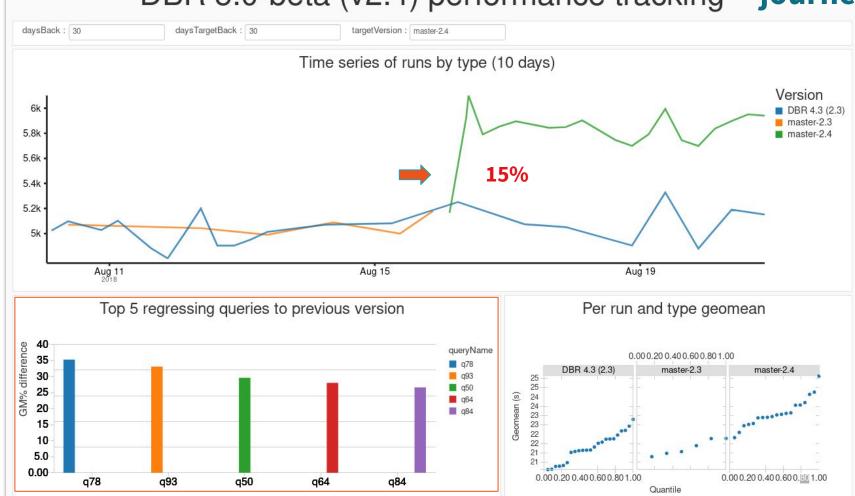
- We use spark-sql-perf public library for TPC workloads
 - Provides datagen and import scripts
 - local, cluster, S3
 - Dashboards for analyzing results
- The Spark micro benchmarks
- And the async-profiler
 - to produce flamegraphs



https://github.com/databricks/spark-sql-perf

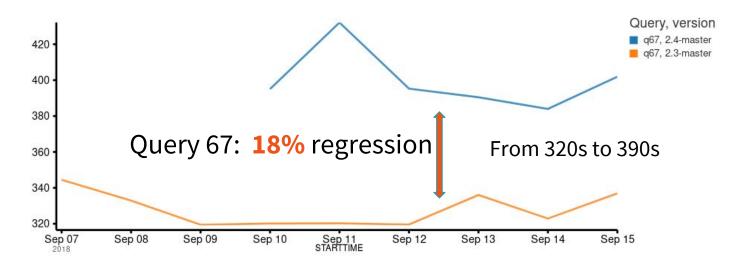


DBR 5.0-beta (v2.4) performance tracking -- journey daysTargetBack: 30 targetVersion: master-2.4

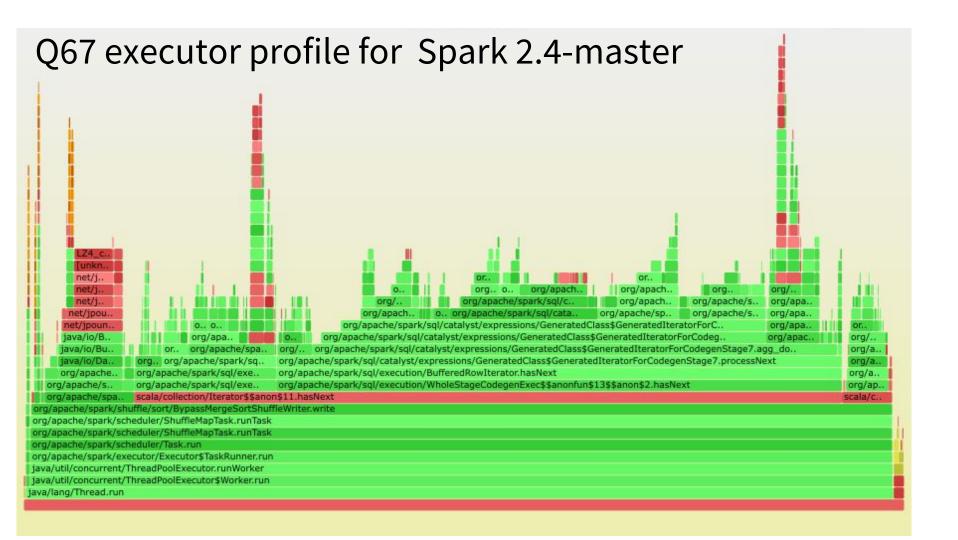


Per query drill-down: q67

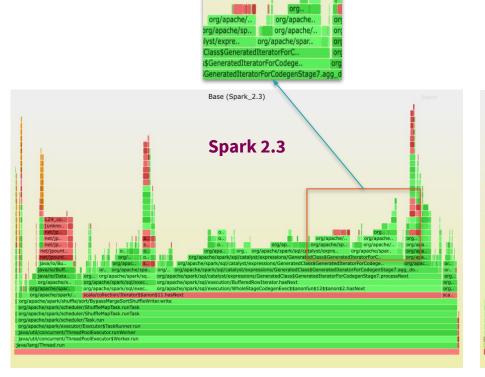
First, scope and validate

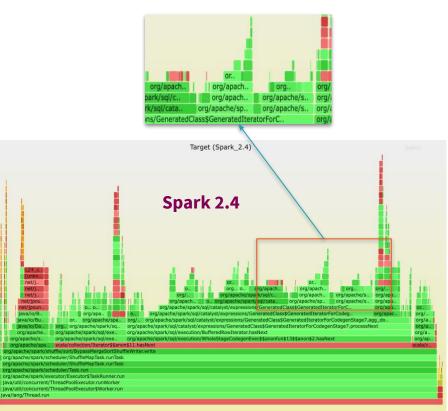


- in 2.4-master (dev) compared
- to 2.3 in DBR 4.3 (prod)



Side-by-side 2.3 vs 2.4: find the differences

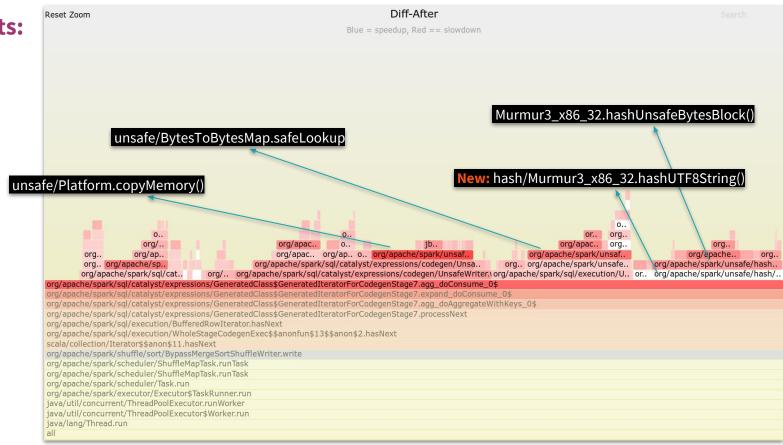




Framegraph diff zoom

Look for hints:

- Mem mgmt
- Hashing
- unsafe



Root-causing

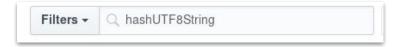
Microbenchmark for UTF8String

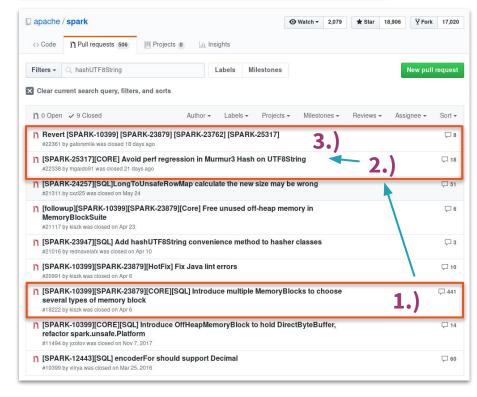
```
test("hashing") {
   import org.apache.spark.unsafe.hash.Murmur3_x86_32
   import org.apache.spark.unsafe.types.UTF8String
   val hasher = new Murmur3_x86_32(0)
   val str = UTF8String.fromString("b" * 10001)
   val numIter = 100000
   val start = System.nanoTime
   for(i <- 0 until numIter) {
      Murmur3_x86_32.hashUTF8String(str, 0)</pre>
```

Results:

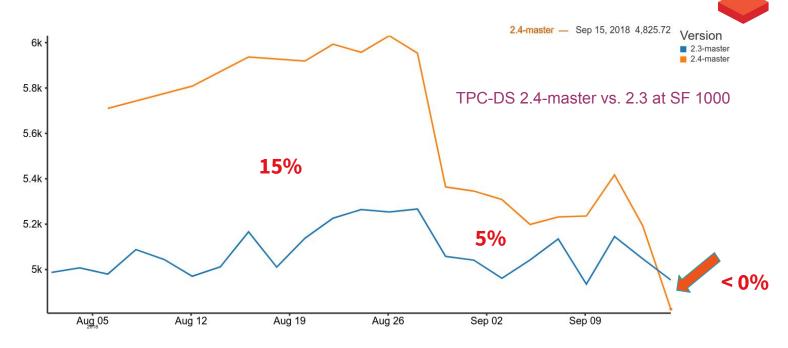
- Spark 2.3: hashUnsafeBytes() -> 40μs
- Spark 2.4 hashUnsafeBytesBlock() -> 140μs
- also slower UTF8String.getBytes()

GIT BISECT





It is a journey to get a release out

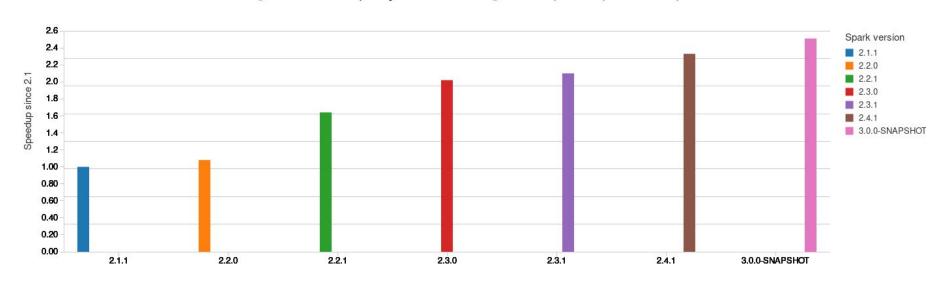


DBR and Spark testing and performance are a continuous effort

Over a month effort to bring performance to improving

... a journey that pays off quickly

Average TPC-DS query total running time speedup since Spark 2.1



Query times have improved over 2X

in the Spark 2.x branch measured in the Databricks platform

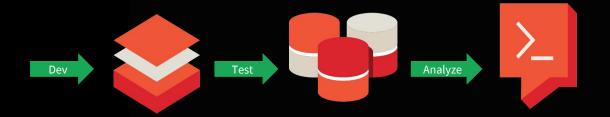
Conclusion

Spark in production is *not just the framework*Unit and integration testing are not enough

We need Spark specific tools to automate the process to ensure both correctness and performance

Fast and Reliable Apache Spark SQL Releases

Thanks!



Feedback: {Nico.Poggi, Bogdan.Ghit}@databricks.com

