
1

Better Safe than Sorry: Checkpointing
In-Memory Data Analytics Applications

Distributed Systems Group
Delft University of Technology

Delft, the Netherlands

ACM HPDC 2017
Washington D.C.

Bogdan Ghit and Dick Epema

2

About me
PhD degree from TU Delft, advised by Dick Epema

Thesis topic on scheduling data analytics frameworks This talk is

about Panda

Hadoop
Fawkes

Tyrex

3

Call for Efficiency

Faster

More efficient

Large-scale data processing is now widespread

4

Spark Scheduling Model

DAG-aware
scheduling

Task to slot allocation In-memory parallel computation

RDD
partition

Task

5

Resilient but Inefficient by Design

0

500

1000

1500

2000

8 10 12 14

Spark

Impact of a single failure

x12 as slow

Critical path length

Jo
b

ru
nt

im
e

[s
]

6

Recomputation vs. Checkpointing

Machines

Failed task

Without checkpointing With checkpointing

Missing
RDD
partition

7

The Case for Checkpointing

Cycle scavenging on cheap but unreliable spot instances reduces
costs by 50-60%

Jeff Dean, https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf

Failure
type

Rate
(per year)

Machines
lost

Downtime

Overheating 0.5 All 1-2 days
PDU 1 500-1000 6 h

Net. rewiring 1 5% 2 days

Racks 20 40-80 1-6 h
Servers 1000 - -

HDD 1000s - -

8

Where We Want to Go

Always Never Sometimes

Frequency of checkpointing

Checkpointing as a task-selection problem:

1)  How to checkpoint tasks?
2)  Which tasks to checkpoint?

9

Checkpointing Tasks

Task

Input RDD
partition

Shuffle files Reducers

Output RDD
partition

k1
k2
k3
k4

k1

k2

k3

k4

Too early Too expensive

How to checkpoint tasks?

10

Google

Facebook
Stage selectivity spans

several orders of magnitude

Task runtimes fit a Pareto
distribution with shape 1.5

Trace
analysis

Greedy

Size-based

Resource-aware

Task properties Three policies

Policy Framework
Which tasks should be checkpointed?

11

Greedy Checkpointing

Input

Budget
exceeded

Stop
checkpointing

The checkpointing budget
•  Limits the checkpointing cost in each stage
•  Set to a fraction of the total stage input

Task selection
•  As many tasks as the budget allows
•  Inflight checkpointing tasks are allowed to finish

12

Size Checkpointing

Task selection
•  Straggler tasks that run very slow
•  Avoid recomputing time-consuming tasks

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Ratio of outlier duration

 to the median task runtime

C
D

F

Identify stragglers
•  Build up a history of task runtimes per job
•  Tasks m times as long as the median runtime

BTWorld

13

Slot 1

Slot 2

Slot 3

Slot 4

Stage k

Greedy versus Size

runtime checkpointing

checkpointing
budget

Slot 1

Slot 2

Slot 3

Slot 4

Stage k

stragglers

14

Aware Checkpointing
Task selection
•  Estimated benefit outweighs the checkpointing cost

R T C

•  Checkpoint tasks if: p (T + R) > C, p is the likelihood of failure

Checkpointing
time

Task runtime

Input
Recovery time

15

Recomputation Cost

R1=pT1

R2=p(T2+R1)

R3=p(T3+R2)

R4=p(T4+R3)

Ri=p(Ti+Rm)

Rm=max{Rk1,Rk5}

k1 k2 k3 -- k7

Single recovery path Multiple recovery paths

16

Checkpointing Cost
Difficult to anticipate
•  Output size and write throughput
•  Contention due to other tasks being checkpointed

Stage 0 - input read from disk, so the recovery time is 0

Worthwhile to checkpoint
Slot 2

Current estimated checkpointing
time of the stage

Slot 3

Slot 4
Slot 5

Slot 1

Slot 7
Slot 6

Slot 8

17

Application DAG Layouts

BTWorld
600 GB

PPPQ
500 GB

NMSQ
500 GB

PageRank
1 GB

Kmeans
10 GB

18

Experimental Setup
Experiments using single real-world applications

Simulation using empirical workload

•  Greedy: the budget is set to 10% based on the median selectivity of all tasks
•  Size: stragglers are tasks running 1.5 times as slow as the median task runtime
•  Periodic: Young’s optimal checkpointing interval

19

Experiment 1

What is the checkpointing overhead
in our policies?

Experiment details:
•  20-machine cluster
•  All applications
•  All policies

20

0

10

20

30

BTWorld PPPQ NMSQ PageRank KMeans
Application

C
he

ck
po

in
tin

g
ov

er
he

ad
 [%

]

Greedy Size Aware Periodic

Takeaway: Size and Aware are very selective in checkpointing and
have relatively low overheads.

21

Experiment 2

How does the performance of our policies compare
with periodic checkpointing?

Experiment details:
•  20-machine cluster
•  BTWorld application
•  All policies

22

● ●

●

●

●

1000

2000

3000

4000

5000

0 1 5 10 15
Failed machines

Jo
b

ru
nt

im
e

[s
]

● Spark Greedy Size

Aware Periodic

Takeaway: Greedy and Aware deliver constant job runtimes for
the complete range of failures.

23

Experiment 3

What is the impact of the lineage length?

Experiment details:
•  5-machine cluster
•  PageRank
•  Aware policy

24

Takeaway: The Aware policy performs very well irrespective of
the lineage length of the application.

● ● ● ●

0

500

1000

1500

2000

8 10 12 14
Iterations

Jo
b

ru
nt

im
e

[s
] ● No failure

Spark
Panda with Aware

Critical path length

25

Simulation

What is the impact of the failure pattern?

Simulation details:
•  10,000-machine cluster
•  Job profiles from experiments
•  Short (< 30min) and long (>2h)

26

●
●
●

●
●

●

●

●

0

20

40

60

0 1 2 3 4 5 10 20 30
Failure events per hour

M
ea

n
im

pr
ov

em
en

t [
%

] ● Short All

Takeaway: Panda stops being beneficial when the cluster
experiences less than one failure per hour.

Google

27

In-memory data analytics require checkpointing,

checkpointing is worthwhile if you do it right,

using Panda is the right way to do it!

Takeaways

28

Backup slides

29

Integration with Spark

(6) W
rite

stat
e

Disk

Panda
client

(7) R
ead

stat
e

read

write

Panda
master

Job
scheduler

(1) Allocate
slots

(2) Heartbeat

(3) Report

running
failed

Tasks

(4) Checkpoint
task

(5) Update metada

•  Fault-tolerance
•  Scalability

30

TR-Spark [SoCC’16]
•  Requires the distribution of task runtimes
•  Requires the distribution of VM lifetimes

Checkpointing is Important

Flint [EuroSys’16]
•  Variation of periodic checkpointing
•  Datasets fit in the cluster memory
•  Failure of the complete cluster

Panda [HPDC’17]
•  More policies, more applications
•  Both experiments and simulations

31

Remote Storage

Remote bulk object store (S3)
•  30-40 MB/s r/w performance per core
•  Scales to 60-80 GB/s across 2800 simultaneous calls

E. Jonas et. al. “Occupy the Cloud: Distributed Computing for the 99%”

