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About me 
PhD degree from TU Delft, advised by Dick Epema 
 
Thesis topic on scheduling data analytics frameworks This talk is 

about Panda 

Hadoop 
Fawkes 

Tyrex 
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Call for Efficiency 

Faster 

More efficient 

Large-scale data processing is now widespread 
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Spark Scheduling Model 

DAG-aware  
scheduling 

Task to slot allocation In-memory parallel computation 

RDD 
partition 

Task 



5 

Resilient but Inefficient by Design 

0 

500 

1000 

1500 

2000 

8 10 12 14 

Spark 

Impact of a single failure 

x12 as slow 

Critical path length 

Jo
b 

ru
nt

im
e 

[s
] 



6 

Recomputation vs. Checkpointing 

Machines 

Failed task 

Without checkpointing With checkpointing 

Missing 
RDD 
partition 
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The Case for Checkpointing 

Cycle scavenging on cheap but unreliable spot instances reduces 
costs by 50-60% 

Jeff Dean, https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf 

Failure 
type 

Rate  
(per year) 

Machines  
lost 

Downtime 

Overheating 0.5 All 1-2 days 
PDU 1 500-1000 6 h 

Net. rewiring 1 5% 2 days 

Racks 20 40-80 1-6 h 
Servers 1000 - - 

HDD 1000s - - 
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Where We Want to Go 

Always Never Sometimes 

Frequency of checkpointing 

Checkpointing as a task-selection problem: 
 
1)  How to checkpoint tasks? 
2)  Which tasks to checkpoint? 
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Checkpointing Tasks 

Task 

Input RDD 
partition 

Shuffle files Reducers 

Output RDD 
partition 

k1 
k2 
k3 
k4 

k1 

k2 

k3 

k4 

Too early Too expensive 

How to checkpoint tasks? 
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Google 

Facebook 
Stage selectivity spans 

several orders of magnitude 

Task runtimes fit a Pareto 
distribution with shape 1.5 

Trace 
analysis 

Greedy 

Size-based 

Resource-aware 

Task properties Three policies 

Policy Framework 
Which tasks should be checkpointed? 
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Greedy Checkpointing 

Input 

Budget 
exceeded 

Stop  
checkpointing 

The checkpointing budget 
•  Limits the checkpointing cost in each stage 
•  Set to a fraction of the total stage input 

Task selection 
•  As many tasks as the budget allows 
•  Inflight checkpointing tasks are allowed to finish 
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Size Checkpointing 

Task selection 
•  Straggler tasks that run very slow 
•  Avoid recomputing time-consuming tasks 
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Identify stragglers 
•  Build up a history of task runtimes per job 
•  Tasks m times as long as the median runtime 

BTWorld 
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Slot 1 

Slot 2 

Slot 3 

Slot 4 

Stage k 

Greedy versus Size 

runtime checkpointing 

checkpointing 
budget 

Slot 1 

Slot 2 

Slot 3 

Slot 4 

Stage k 

stragglers 
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Aware Checkpointing 
Task selection 
•  Estimated benefit outweighs the checkpointing cost 

      
R T C 

•  Checkpoint tasks if: p (T + R) > C, p is the likelihood of failure 

Checkpointing  
time 

Task runtime 

Input  
Recovery time 
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Recomputation Cost 

R1=pT1 

R2=p(T2+R1) 

R3=p(T3+R2) 

R4=p(T4+R3) 

Ri=p(Ti+Rm) 

Rm=max{Rk1,Rk5} 

k1 k2 k3 -- k7 

Single recovery path Multiple recovery paths 
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Checkpointing Cost 
Difficult to anticipate 
•  Output size and write throughput 
•  Contention due to other tasks being checkpointed 

Stage 0 - input read from disk, so the recovery time is 0 

Worthwhile to checkpoint 
Slot 2 

Current estimated checkpointing  
time of the stage 

Slot 3 

Slot 4 
Slot 5 

Slot 1 

Slot 7 
Slot 6 

Slot 8 
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Application DAG Layouts 

BTWorld 
600 GB 

PPPQ 
500 GB 

NMSQ 
500 GB 

PageRank 
1 GB 

Kmeans 
10 GB 
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Experimental Setup 
Experiments using single real-world applications 

Simulation using empirical workload 

•  Greedy: the budget is set to 10% based on the median selectivity of all tasks 
•  Size: stragglers are tasks running 1.5 times as slow as the median task runtime 
•  Periodic: Young’s optimal checkpointing interval  
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Experiment 1 

What is the checkpointing overhead  
in our policies? 

Experiment details: 
•  20-machine cluster 
•  All applications 
•  All policies 
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Takeaway: Size and Aware are very selective in checkpointing and 
have relatively low overheads. 
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Experiment 2 

How does the performance of our policies compare 
with periodic checkpointing? 

Experiment details: 
•  20-machine cluster 
•  BTWorld application  
•  All policies 
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Takeaway: Greedy and Aware deliver constant job runtimes for 
the complete range of failures. 
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Experiment 3 

What is the impact of the lineage length? 

Experiment details: 
•  5-machine cluster 
•  PageRank 
•  Aware policy 
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Takeaway: The Aware policy performs very well irrespective of 
the lineage length of the application. 

● ● ● ●

0

500

1000

1500

2000

8 10 12 14
Iterations

Jo
b 

ru
nt

im
e 

[s
] ● No failure

Spark
Panda with Aware

Critical path length 



25 

Simulation 

What is the impact of the failure pattern? 

Simulation details: 
•  10,000-machine cluster 
•  Job profiles from experiments 
•  Short ( < 30min) and long (>2h) 
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Takeaway: Panda stops being beneficial when the cluster 
experiences less than one failure per hour. 

Google 
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In-memory data analytics require checkpointing, 
 
checkpointing is worthwhile if you do it right, 
 
using Panda is the right way to do it! 

Takeaways 
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Backup slides 
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Integration with Spark 

(6) W
rite
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e

Disk

Panda
client
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read

write

Panda
master

Job
scheduler

(1) Allocate
slots

(2) Heartbeat

(3) Report

running
failed

Tasks

(4) Checkpoint
task

(5) Update metada

•  Fault-tolerance 
•  Scalability 
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TR-Spark [SoCC’16] 
•  Requires the distribution of task runtimes  
•  Requires the distribution of VM lifetimes 

Checkpointing is Important 

Flint [EuroSys’16] 
•  Variation of periodic checkpointing 
•  Datasets fit in the cluster memory 
•  Failure of the complete cluster  

Panda [HPDC’17] 
•  More policies, more applications 
•  Both experiments and simulations 
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Remote Storage 

Remote bulk object store (S3) 
•  30-40 MB/s r/w performance per core  
•  Scales to 60-80 GB/s across 2800 simultaneous calls 

E. Jonas et. al. “Occupy the Cloud: Distributed Computing for the 99%” 


