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About me

PhD degree from TU Delft, advised by Dick Epema

Thesis topic on scheduling data analytics frameworks This talk is
about Panda
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Call for Efficiency

Large-scale data processing is now widespread
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Spark Scheduling Model

Task

RDD

partition - '
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| W | scheduling

Task to slot allocation

In-memory parallel computation
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Resilient but Inefficient by Design

Impact of a single failure
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Recomputation VS. Checkpointing

Failed task

Missing
RDD
partition

Machines

.I’fu Delft Without checkpointing

With checkpointing



Failure Rate Machines Downtime
type (per year) lost

Overheating 1-2 days
PDU 1 500-1000 6 h
Net. rewiring 1 5% 2 days
Racks 20 40-80 1-6 h
Servers 1000 - -
HDD 1000s - -

Cycle scavenging on cheap but unreliable spot instances reduces
costs by 50-60%
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Where We Want to Go

Never Sometimes

Frequency of checkpointing

Checkpointing as a task-selection problem:

1) How to checkpoint tasks?
2) Which tasks to checkpoint?
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Checkpointing Tasks

How to checkpoint tasks?

Output RDD
partition

Input RDD
partition

Shuffle files Reducers

Too early Too expensive
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Which tasks should be checkpointed?

Stage selectivity spans

several orders of magnitude Greedy

Resource-aware

Task runtimes fit a Pareto

distribution with shape 1.5 Size-based

Trace Task properties Three policies
analysis
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Greedy Checkpointing

Task selection

II * As many tasks as the budget allows
Stop « Inflight checkpointing tasks are allowed to finish

o - - - - - -

llllllll W checkpointing
¢

Budget The checkpointing budget
« Limits the checkpointing cost in each stage
« Set to a fraction of the total stage input

exceeded
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BTWorld

1.00- Task selection
/ « Straggler tasks that run very slow
0.757 « Avoid recomputing time-consuming tasks
LDLO.SO- € >
O
0.25 .
] Identify stragglers
0001 = ! ! i « Build up a history of task runtimes per job
0 10 20 30 .

Ratio of outlier duration Tasks m times as long as the median runtime

to the median task runtime
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Greedy versus Size

runtime checkpointing stragglers
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Aware Checkpointing

Task selection
« Estimated benefit outweighs the checkpointing cost
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Task runtime

« Checkpoint tasks if: p (T + R) > C, p is the likelihood of failure
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Recomputation Cost

Single recovery path
<7
TUDelft

Multiple recovery paths
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Checkpointing Cost

Difficult to anticipate
« Qutput size and write throughput
« Contention due to other tasks being checkpointed

T worthwhile to checkpoint
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~ Stage O - input read from disk, so the recovery time is 0
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BTWorld
600 GB
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PPPQ
500 GB

NMSQ
500 GB

PageRank
1 GB

e

Kmeans
10 GB
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Experimental Setup

e Experiments using single real-world applications

‘\(‘;; = ﬁef/—
Simulation using empirical workload \ | /g/,—‘;“

« Greedy: the budget is set to 10% based on the median selectivity of all tasks
« Sijze: stragglers are tasks running 1.5 times as slow as the median task runtime
» Periodic: Young's optimal checkpointing interval
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Experiment 1

What is the checkpointing overhead
in our policies?

Experiment details:

20-machine cluster
All applications
All policies
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Takeaway: Size and Aware are very selective in checkpointing and
have relatively low overheads.
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Experiment 2

How does the performance of our policies compare
with periodic checkpointing?

Experiment details:

« 20-machine cluster
« BTWorld application
« All policies
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Takeaway: Greedy and Aware deliver constant job runtimes for
the complete range of failures.
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Spark Greedy =M Size
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Experiment 3

What is the impact of the lineage length?

Experiment details:
5-machine cluster
PageRank

« Aware policy
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Takeaway: The Aware policy performs very well irrespective of

the lineage length of the application.
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Simulation

What is the impact of the failure pattern?

Simulation details:

10,000-machine cluster
Job profiles from experiments
Short ( < 30min) and long (>2h)
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Takeaway: Panda stops being beneficial when the cluster
experiences less than one failure per hour.
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In-memory data analytics require checkpointing,
checkpointing is worthwhile if you do it right,

using Panda is the right way to do it!
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Backup slides
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Integration with Spark

Job (3) Report
scheduler

(2) Heartbeat

(4) Checkpoint

(1) Allocate
slots \

Tasks |:| |:|
[] running |:| |:| -

[ failed

 Fault-tolerance
« Scalability
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Checkpointing is Important

Flint [EuroSys’16]

. Variation of periodic checkpointing
. Datasets fit in the cluster memory
. Failure of the complete cluster

TR-Spark [SoCC’16]
« Requires the distribution of task runtimes
* Requires the distribution of VM lifetimes

Panda [HPDC'17]

* More policies, more applications
* Both experiments and simulations
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Remote bulk object store (S3)

30-40 MB/s r/w performance per core
Scales to 60-80 GB/s across 2800 simultaneous calls

E. Jonas et. al. “Occupy the Cloud: Distributed Computing for the 99%”
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