Dynamic Scheduling of Hadoop Clusters in Datacenters

Bogdan Ghiţ

Parallel and Distributed Systems

Delft University of Technology Delft, the Netherlands

Challenge the future

Born in Bucharest, Romania

PhD Candidate at TU Delft

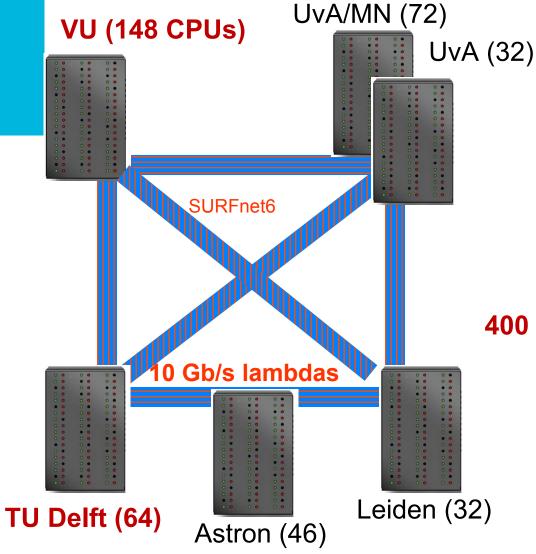
- supervised by Dick Epema
- scheduling in clusters and performance of MapReduce

Experimental research:

- design models by theoretical study and analysis
- validate models by implementation and experimentation

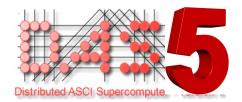
COMMIT/

Our experimental testbed: DAS-4



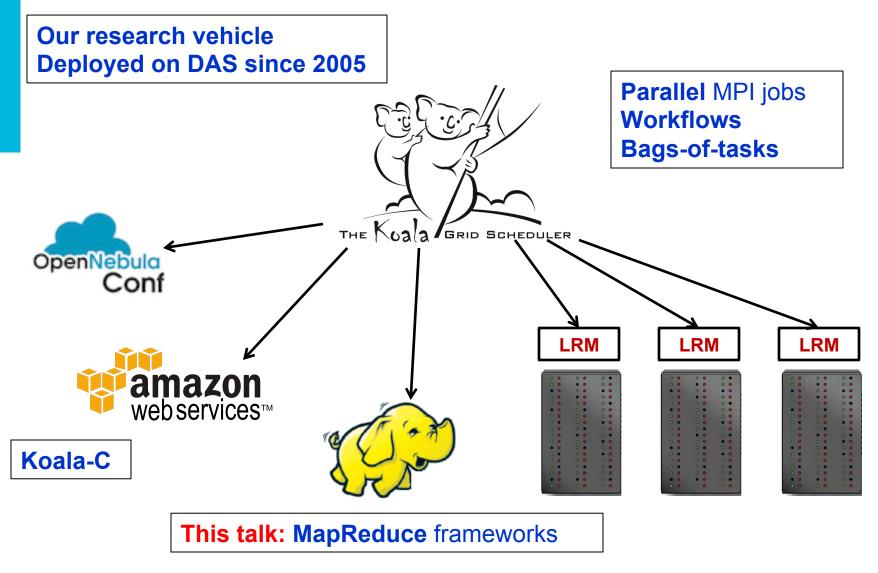
TUDelft

10+ years of system research300+ scientists as users

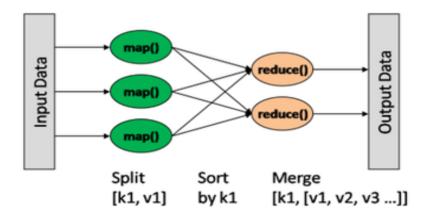


400 200 dual-quad-core compute nodes
24 GB memory per node
150 TB total storage
20 Gpbs QDR InfiniBand network
FDR

The KOALA multicluster scheduler



Hadoop and MapReduce



MapReduce

- Two-phase processing
- Data locality constraints
- Inter-task dependency 0

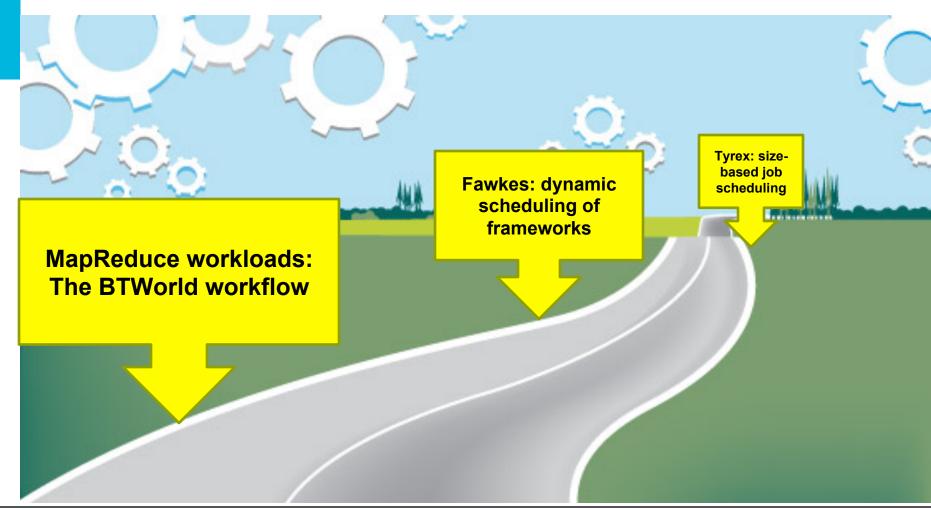
Open-source software

- **HDFS** high-throughput access to data
- **MapReduce** parallel data processing 0
- **Yarn –** cluster resource management

In our experiments

- 6 map slots vs. 2 reduce slots
- 128 MB per data block
- 3 replicas of each data block
- 3 GB memory per task
- InfiniBand network

Roadmap



Challenge the future

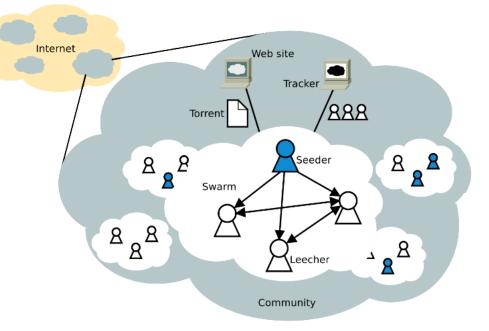
The BTWorld project: a typical big data use case (1/2)

BitTorrent

• Most used protocol on Internet

• Over 100 million users

	Upstream		
Rank	Application	Share	
1	BitTorrent	48.10%	
2	YouTube	7.12%	
3	HTTP	5.74%	
4	Skype	4.96%	
5	Facebook	3.54%	
6	Netflix	2.83%	
7	SSL	2.47%	
8	eDonkey	1.12%	
9	Dropbox	1.12%	
10	RTMP	0.85%	
		77.83%	



The BTWorld project: a typical big data use case (2/2)

Our approach

monitor servers not users

Collected data

o over 15 TB since 2009

o 1 file / tracker / sample



Multi-record files

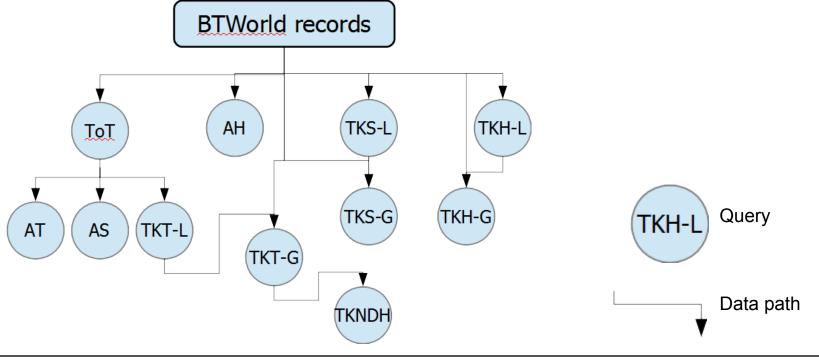
- o timestamp: logging time
- hash: unique id for content
- o tracker: unique id for server
- o info per file: seeders, leechers, downloads

M. Wojciechowski, M. Capota, J. Pouwelse, A. Iosup, "Towards observing the global BitTorrent file-sharing network", ACM HPDC 2010

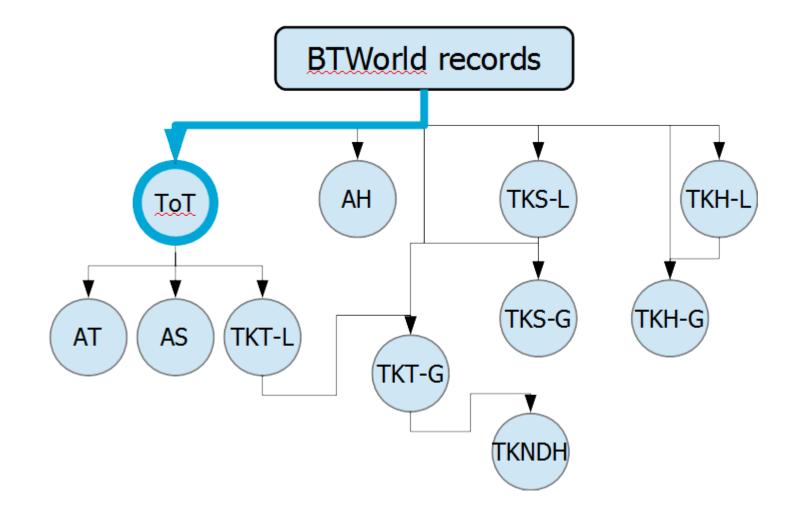
The BTWorld workflow (1/4)

Analyst questions

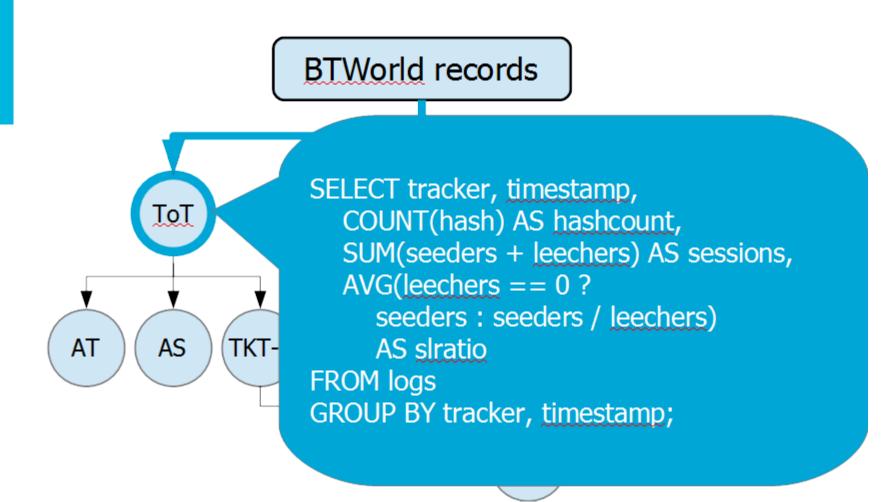
- How does the number of peers evolve over time?
- How long are files available?
- Did the legal bans and tracker take-downs impact BT?
- How does the location of trackers evolve over time?



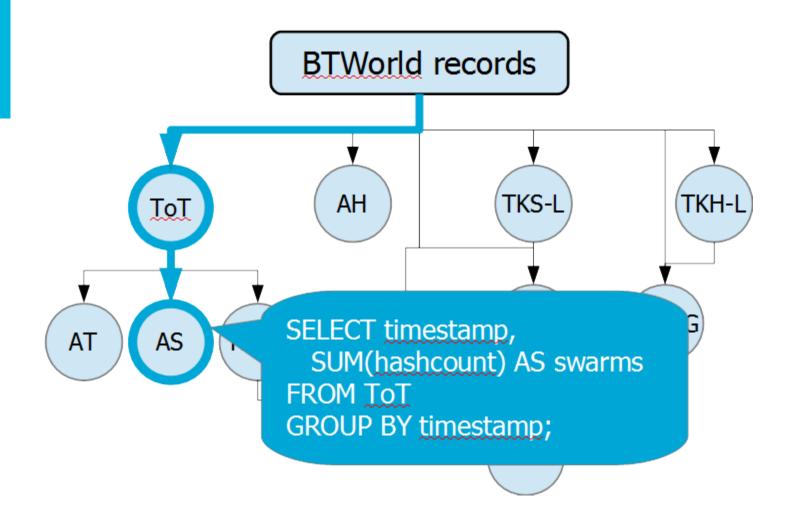
The BTWorld workflow (2/4)



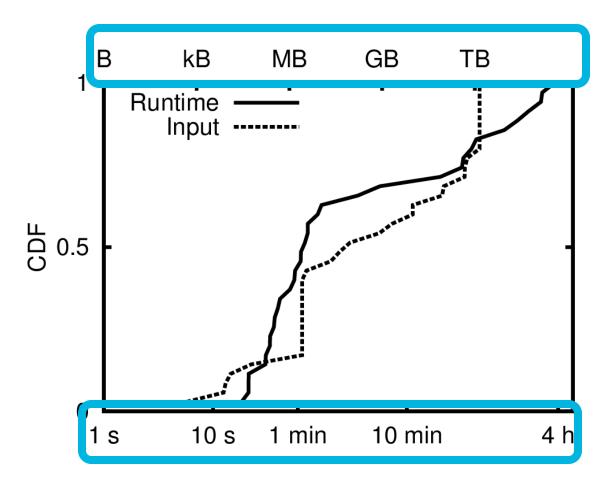
The BTWorld workflow (3/4)



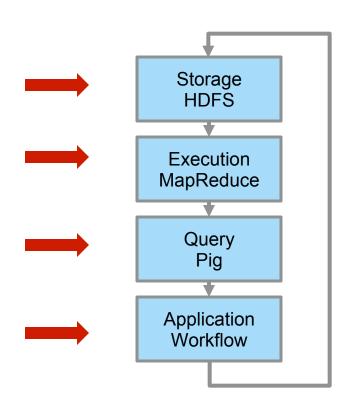
The BTWorld workflow (4/4)



Variety in job input size and job runtime



Platform optimisations



HDFS

- Data pre-processing
- Reduced replication

MapReduce

- Task memory versus number of tasks
- Stalled reduce execution

Pig

- Not enough operators
- Adaptive scheduling of reduce tasks

Workflow

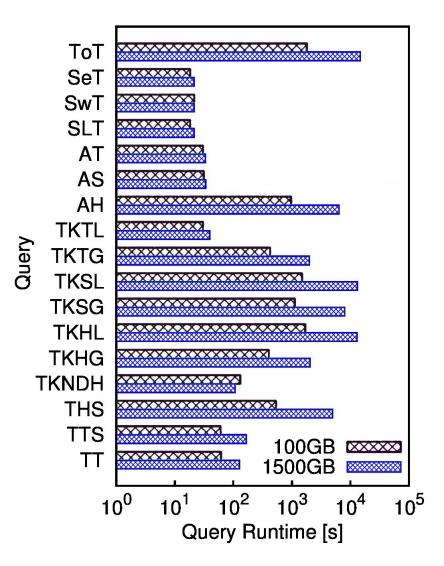
- Reuse intermediary data
- Extract execution patterns

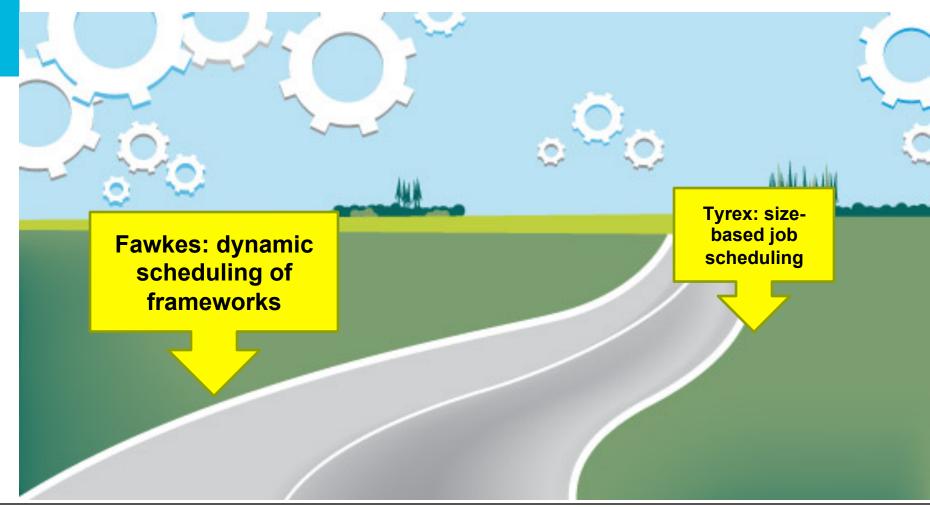
B.I. Ghit, M. Capota, T. Hegeman, D.H.J. Epema, A. Iosup, "V for Vicissitude: The Challenge of Scaling Complex Big Data Workflows", **winner SCALE Challenge** at CCGrid 2014.

Long versus short

Nodes	24	
Map slots	92	
Reduce slots	92	
Memory per task	6 GiB	
Total memory	552 GiB	
HDFS replication	2	

Short queries are relatively scale-free Long queries do not scale linearly





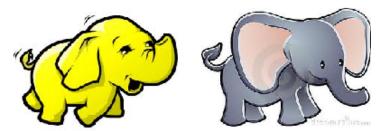
Challenge the future

Why multiple frameworks?

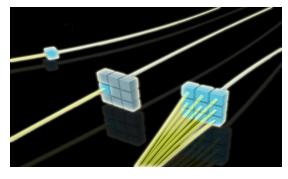
Data isolation

Failure isolation

Version isolation



Performance isolation

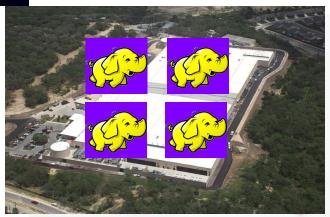


Appealing for companies and users Difficult to **achieve** and to **define**

The "big data cake" in datacenters

Online Social Networks

Financial Analysts



Universe Explorers

R

Big Data Enthusiast

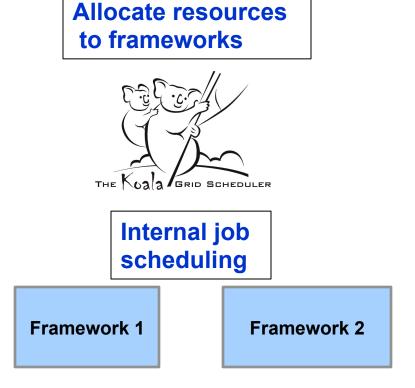
Scheduling Frameworks (1/2)

Monolithic schedulers:

o single, centralized scheduling algorithm

Two-level schedulers:

- lower scheduling overhead
- flexibility and parallelism
- isolation among frameworks
- o transparent job submission



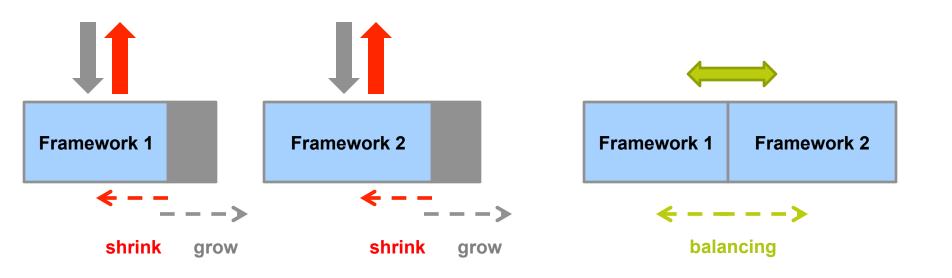
Scheduling Frameworks (2/2)

Resource offers

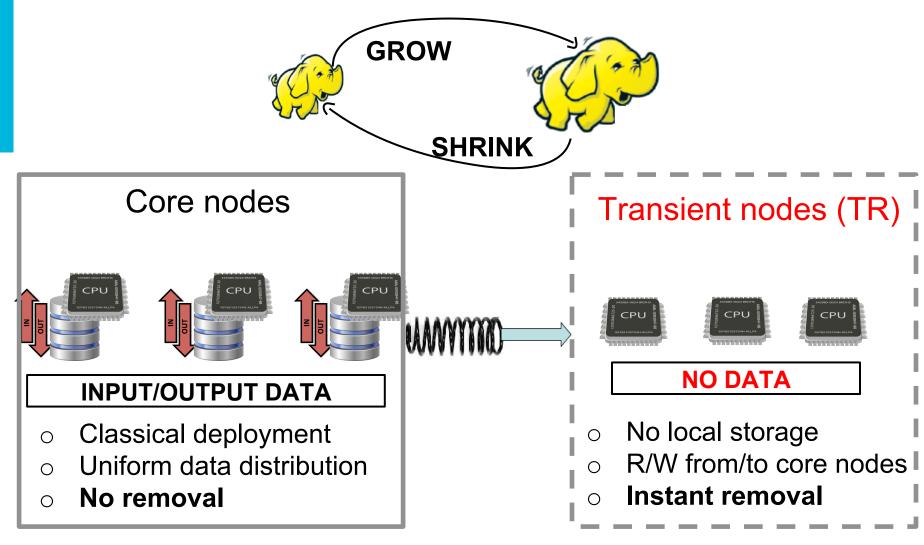
- Frameworks accept/reject offers
- Best-effort strategy

Resource balancing

- Koala has access to the global state
- Koala finds the optimal configuration

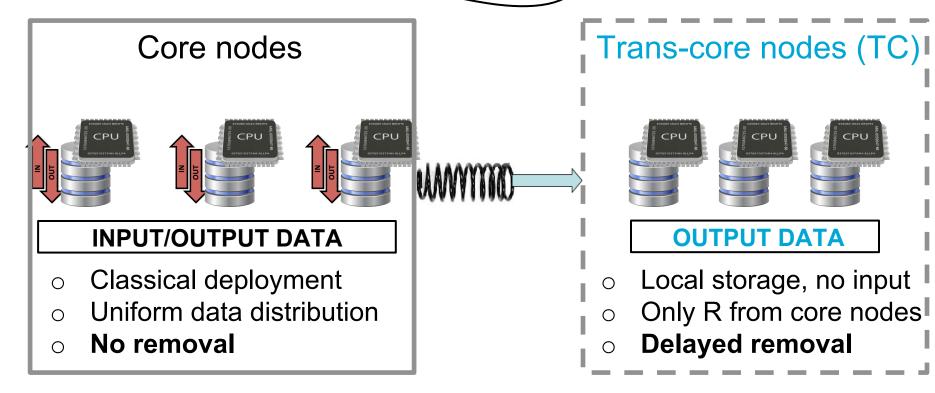


Resizing MapReduce: no data locality

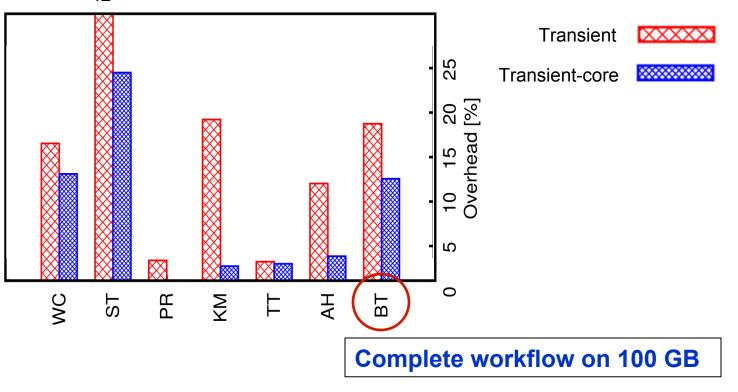


Resizing MapReduce: relaxed data locality



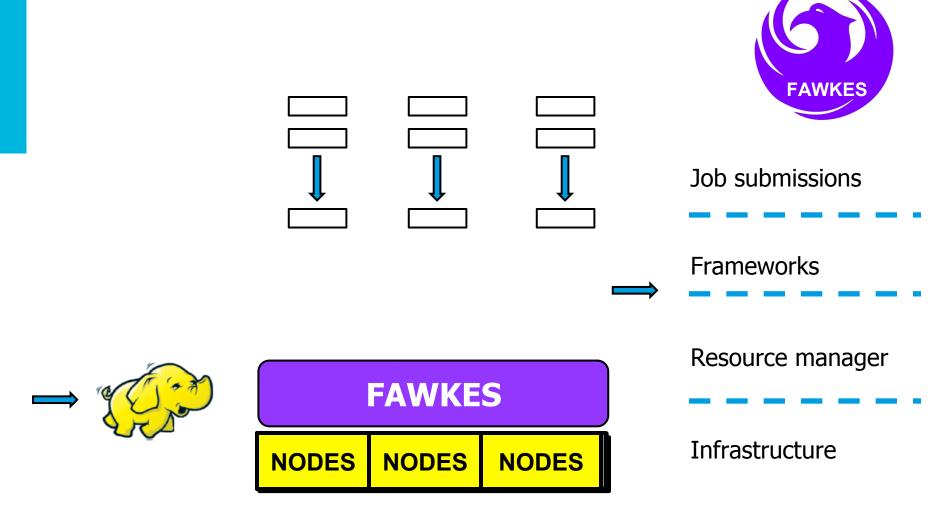


Performance of no versus relaxed data locality



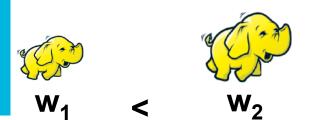
- Single-application performance overhead
- 10 core nodes + 10 transient/transient-core nodes

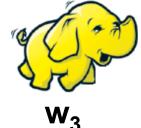
Dynamic scheduling with FAWKES



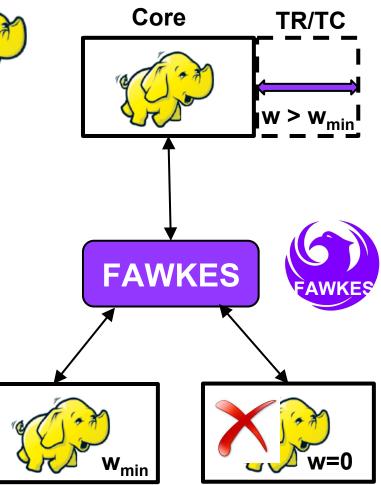
B.I. Ghit, N. Yigitbasi, A. Iosup, D.H.J. Epema, "Balanced Resource Allocations across Multiple Dynamic MapReduce Clusters", ACM Sigmetrics 2014.

Balancing Allocations with FAWKES

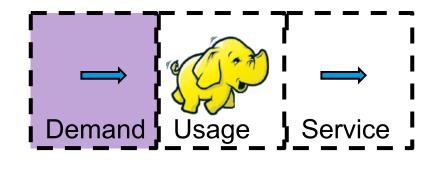


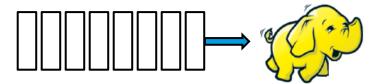


- 1. Updates dynamic weights when:
 - o new frameworks arrive
 - $\circ~$ framework states change
- 2. Shrinks and grows frameworks to:
 - allocate new frameworks (min. shares)
 - give fair shares to existing ones



How to differentiate frameworks (1/3)

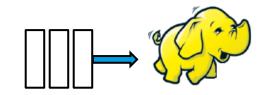




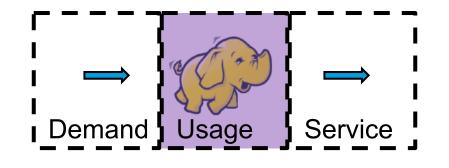
By demand – 3 policies:

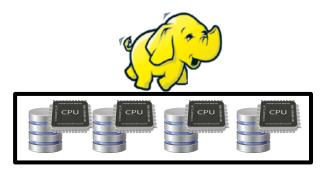
- Job Demand (JD)
- Data Demand (DD)
- Task Demand (TD)

versus



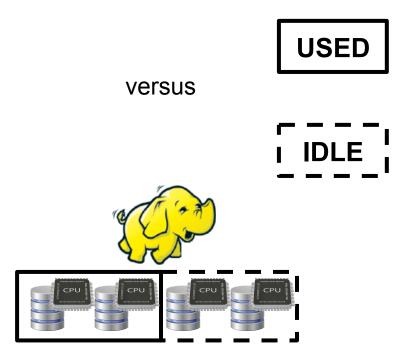
How to differentiate frameworks (2/3)



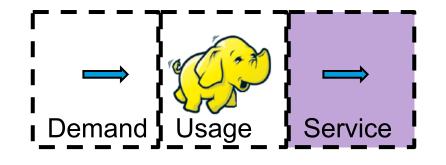


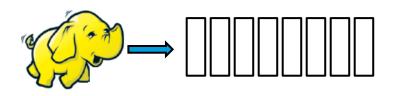
By usage – 3 policies:

- Processor Usage (PU)
- Disk Usage (DU)
- Resource Usage (RU)



How to differentiate frameworks (3/3)

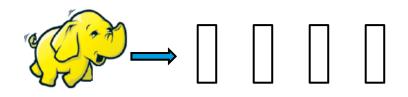




By service – 3 policies:

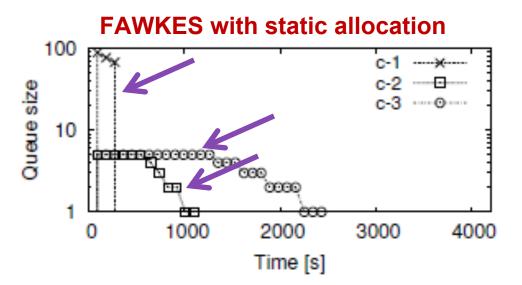
- Job Slowdown (JS)
- Job Throughput (JT)
- Task Throughput (TT)

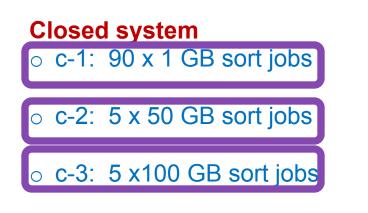
versus

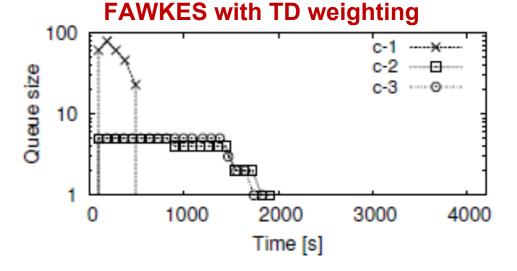


Performance of FAWKES (1/2)

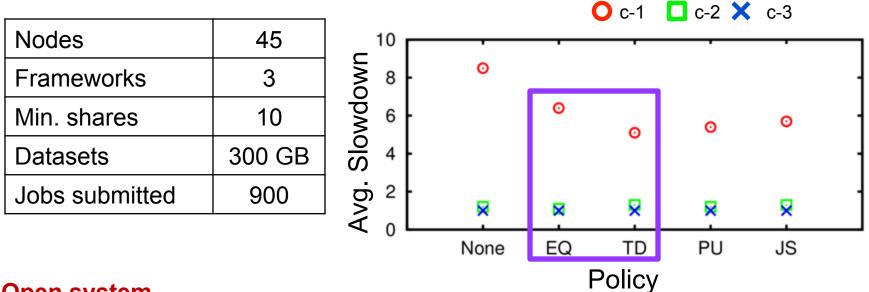
Nodes	45	
Frameworks	3	
Min. shares	10	
Datasets	200 GB	
Jobs submitted	100	







Performance of FAWKES (2/2)

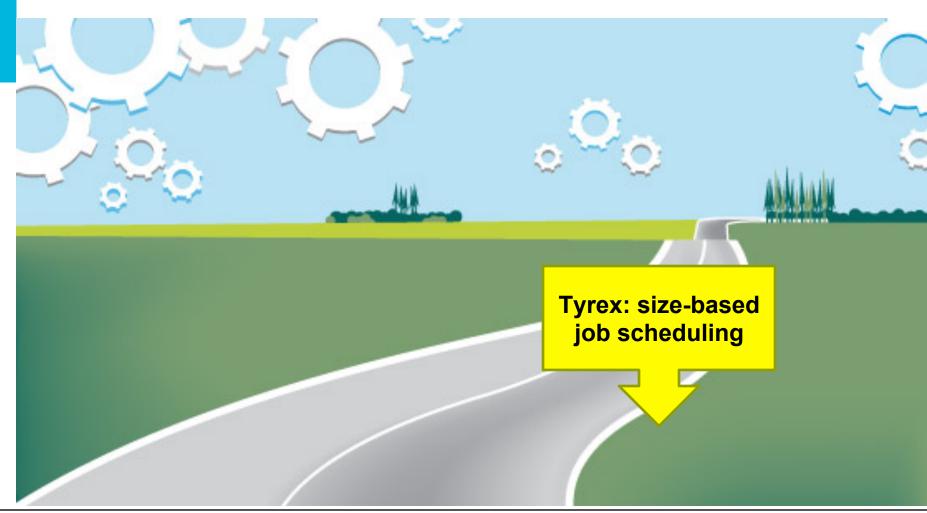


Open system

- Poisson arrivals
- c-1: 1 100 GB wordcount and sort jobs
- o c-2, c-3: 1 GB wordcount and sort jobs

None – Minimum shares

- **EQ** EQual shares
- **TD** Task Demand
- PU Processor Usage
- JS Job Slowdown

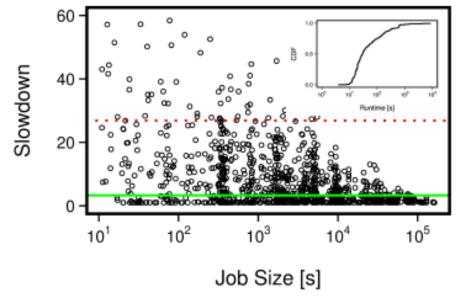


Challenge the future

Job scheduling in MapReduce

MapReduce workloads

- \circ skewed job size distributions
- o high job size variability
- o short jobs prevail, but long jobs dominate
- challenging for existing schedulers



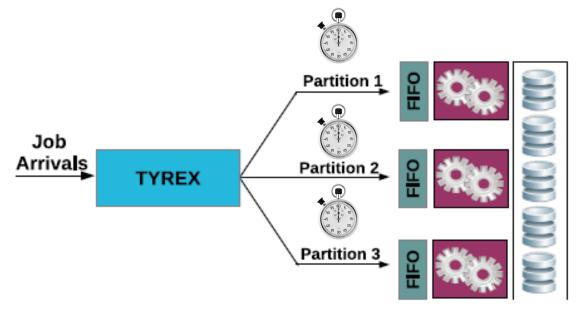
FIFO with a Facebook trace

We need some form of isolation within a single framework

Size-based scheduling with Tyrex

Based on TAGS policy for distributed servers

- Partition capacities
- Elastic parallel jobs
- No killing

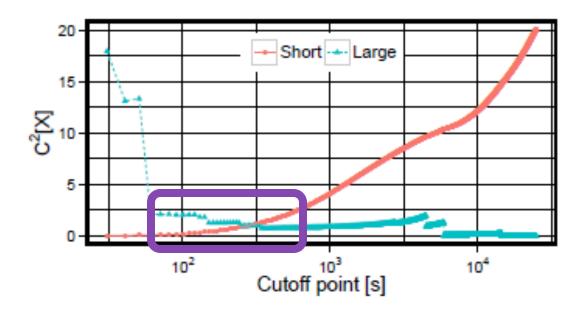


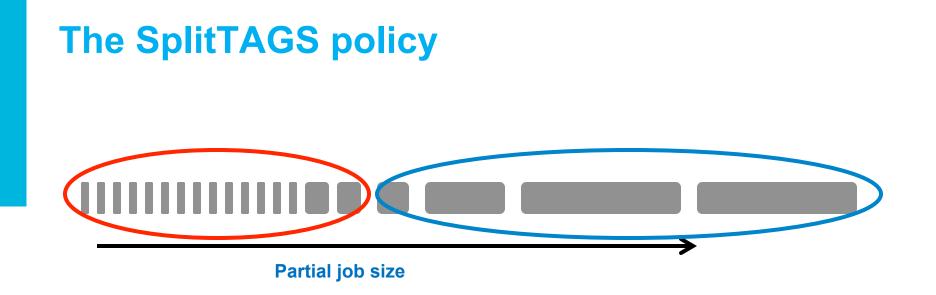
Processors HDFS

Dynamic timers with Tyrex

Optimal timers

- \circ no closed forms
- complex expressions for Pareto distributions
- significant human effort to find them
- o may change over time



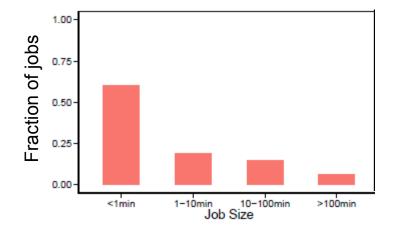


Partial job size = sum of completed task runtimes **Remaining job size** = non-completed tasks

Find the timer to minimize the maximum variability

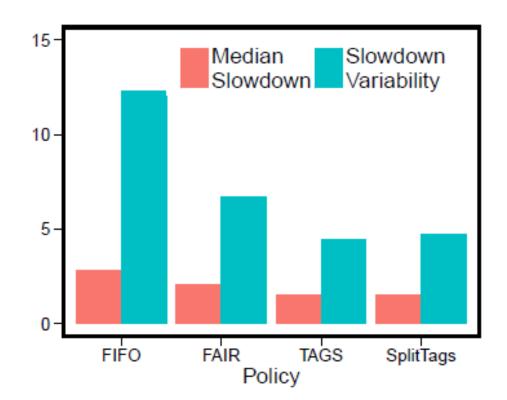
- $\circ~$ SCV of remaining job sizes
- Preempt all jobs with **partial sizes** larger than the timer

Experimental setup



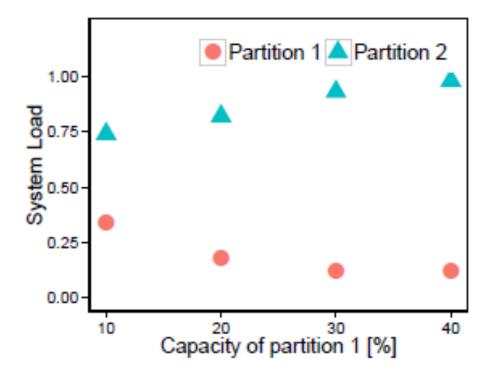
	(
Statistics	HVW	MVW	LVW
Total jobs		300	
BTWORLD jobs	33	45	10
Total maps	6,139	11,866	30,576
Total reduces	788	1,368	3,089
Temporary data [GB]	573	693	1,062
Persistent data [GB]	100	92	303
Total CPU time [h]	63.6	124.6	306.9
Total runtime [h]	3.51	3.98	5.31

Performance of Tyrex



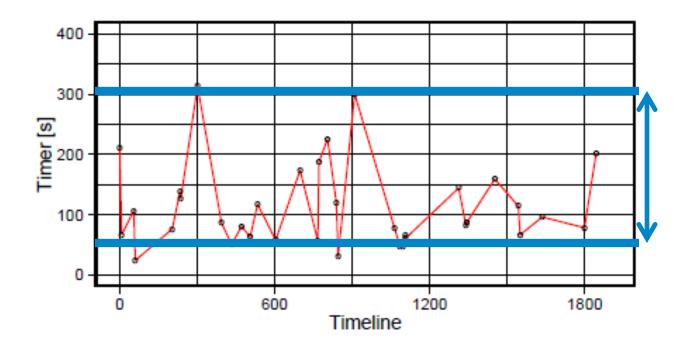
TAGS and SplitTags offer considerable improvements

To balance or not to balance?



Very low load conditions in partition 1

Stability of dynamic timers



1 change per minute at 70% load Stays in the range of 50-300 seconds

Conclusions

BTWorld workflow

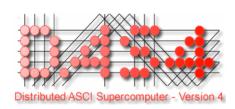
- benchmarking MapReduce systems
- representative for MapReduce workloads

Fawkes mechanism

- o automatic deployment and elastic data-processing
- reduces the imbalance between frameworks

Tyrex scheduler

- $\circ~$ job isolation by means of timers
- very good slowdown performance (with and without timers)



ŤUDelft



Our research tag cloud

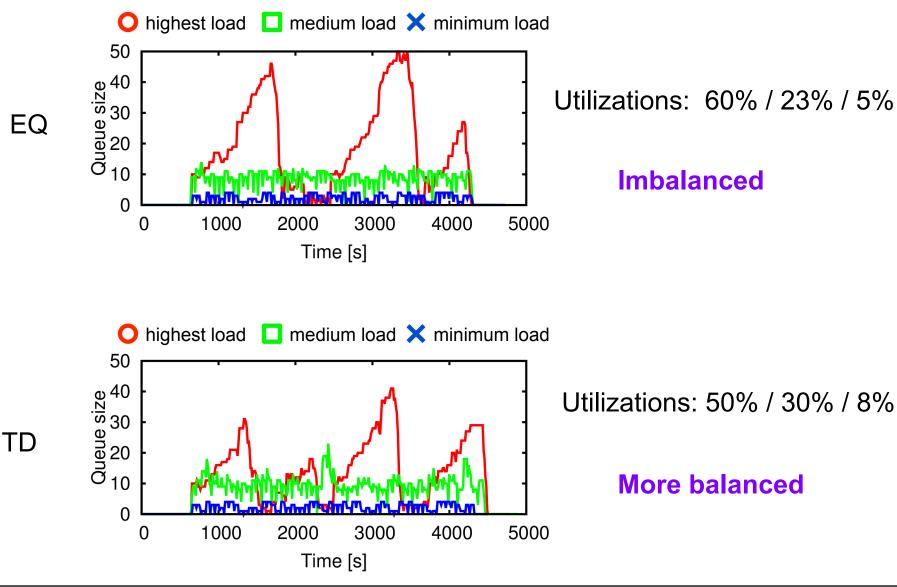
More information

- www.publications.st.ewi.tudelft.nl
- o www.pds.ewi.tudelft.nl/ghit
- www.pds.ewi.tudelft.nl/epema

Backup slides

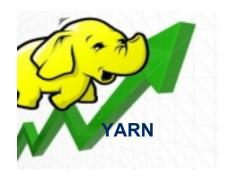
Challenge the future

FAWKES behind the scenes



TUDelft

Contrasting the frameworks



- \circ $\,$ Resource requests from applications $\,$
- \circ Capacity and Fair schedulers

FAWKES uses feedback from system operation

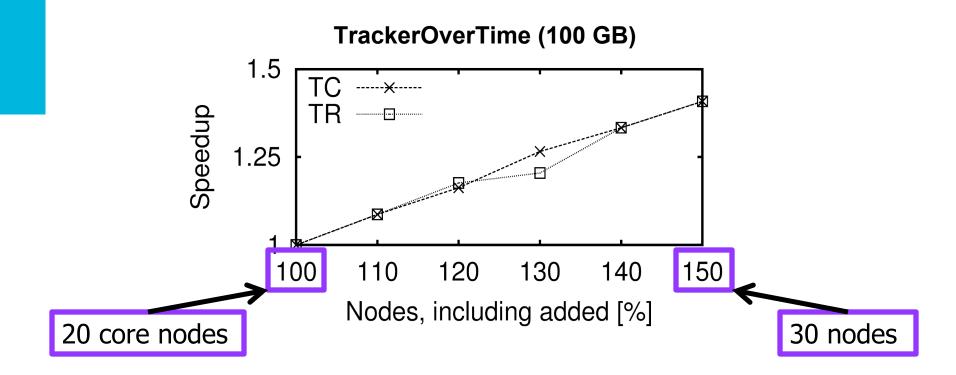
- Resource offers to frameworks
- \circ No fairness guarantees

FAWKES schedules frameworks automatically

- $\circ~$ Grid and cloud scheduler @ TU Delft
- Single applications and frameworks

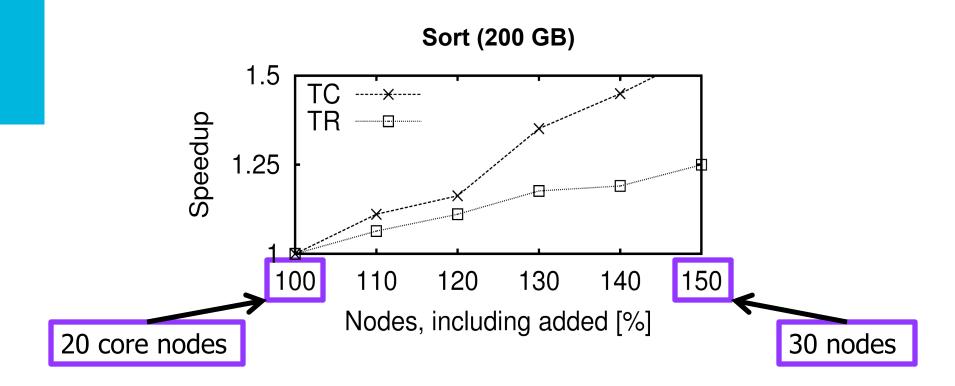
FAWKES is a research prototype

Speedup of growing



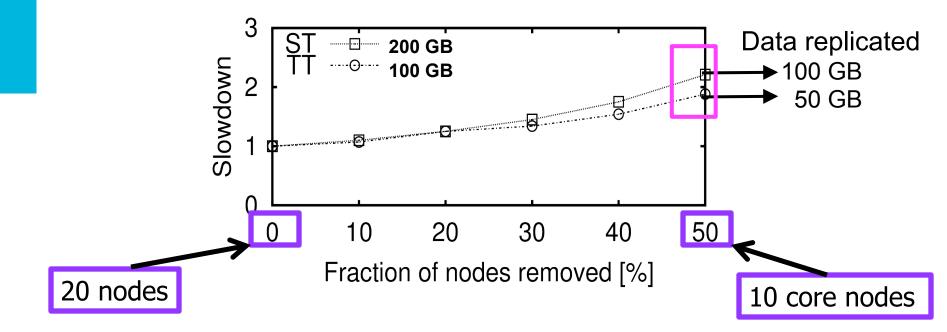
TR nodes deliver good performance for CPU bound workloads

Speedup of growing



(Only) TC nodes deliver good performance for disk-bound workloads

Speedup of shrinking



Job slowdown increases linearly with the amount of replicated data

