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=> Simple, approximate job slowdown expression as a function of bid
=> Validated prediction accuracy using simulations
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Cloud SpOt Markets Announcing low-priority VMs on scale sets now in

public preview

Posted on May 3, 2018

Meagan McCrory, Senior Program Manager, Azure Compute

ER Microsoft Azure

Google Cloud Platform Blog

On-demand instance

Product updates, customer stories, and tips and tricks on Google Cloud Platform

Spot instance

Added when bid > spot price Introducing Preemptible VMs, a new class of compute

available at 70% off standard pricing
Monday, May 18, 2015
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Announcing Amazon EC2 Spot Instances

Posted On: Dec 14, 2009

We are excited to announce the introduction of Amazon EC2 Spot Instances, a new way to purchase and consume Amazon EC2
Instances. Spot Instances allow customers to bid on unused Amazon EC2 capacity and run those instances for as long as their bid
exceeds the current Spot Price. The Spot Price changes periodically based on supply and demand, and customers whose bids meet or
exceed it gain access to the available Spot Instances. Spot Instances are complementary to On-Demand Instances and Reserved
Instances, providing another option for obtaining compute capacity. If you have flexibility in when your applications can run, Spot
Instances can significantly lower your Amazon EC2 costs. Additionally, Spot Instances can provide access to large amounts of additional
capacity for applications with urgent needs. To learn more, please visit the Amazon EC2 Spot Instances detail page.




Interruption Rates for AWS Spot Instances
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Cloud Analytics Applications

e HotCloud’10
e HPDC12
e HPDC17

and shrink over time
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This Work

Data analytics jobs may suffer large slowdowns

due to preemptions on the spot market

Bidding strategies Checkpointing policies

Our goal: provide an expectation of the job slowdown as a
function of the bid value



Elastic Applications
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Bribery Queueing Model
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Prediction Framework
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Simulation Setup
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Bid Distribution Parameters
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(a) Linearly decreasing (b) Uniform (c) Linearly increasing
b(x) = 2(1-x) b(x) =1 b(x) = 2x

e Parameters fluctuate around their values governed by a/g = 0.5, 1, 2
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Avg. job slowdown

Prediction Accuracy
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High accuracy for the entire range of bid values, irrespective

of the shape of the bid distribution.



Conclusion

=> Simple, approximate job slowdown expression as a function of bid

-> Methodology for dynamically estimating the model parameters

=> Validated prediction accuracy using simulations



