Dynamic Partition Pruning in Apache Spark

Bogdan Ghit and Juliusz Sompolski

Spark + AI Summit, Amsterdam

About Us

Bogdan Ghit

Juliusz Sompolski

BI Experience team in the

Databricks Amsterdam European Development Centre

- Working on improving the experience and performance of Business Intelligence / SQL analytics workloads using Databricks
 - JDBC / ODBC connectivity to Databricks clusters
 - Integrations with BI tools such as Tableau
 - But also: core performance improvements in Apache Spark for common SQL analytics query patterns

How to Make a Query 100x Faster?

Static Partition Pruning

SELECT * FROM Sales WHERE day of week = 'Mon'

Table Denormalization

SELECT * FROM Sales JOIN Date
WHERE Date.day_of_week = `Mon'

This Talk

SELECT * FROM Sales JOIN Date
WHERE Date.day_of_week = `Mon'

Dynamic pruning

Spark In a Nutshell Physical Plan Logical Plan Optimization Selection Stats-based **Rule-based RDD** batches cost model transformations **Cluster slots**

Optimization Opportunities

A Simple Approach

Work duplication may be expensive

Heuristics based on inaccurate stats

Broadcast Hash Join

Reusing Broadcast Results

databricks

Experimental Setup

Workload Selection

- TPC-DS scale factors 1-10 TB

Cluster Configuration

- 10 i3.xlarge machines

Data-Processing Framework

- Apache Spark 3.0

TPC[®]

TPCDS 1 TB

60 / 102 queries speedup between 2 and 18

Top Queries

Very good speedups for top 10% of the queries

Data Skipped

Very effective in skipping data

TPCDS 10 TB

Even better speedups at 10x the scale

Query 98

```
SELECT i item desc, i category, i class, i current price,
       sum(ss ext sales price) as itemrevenue,
       sum(ss ext sales price)*100/sum(sum(ss ext sales price)) over
         (partition by i class) as revenueratio
FROM
   store sales, item, date dim
WHERE
  ss item sk = i item sk
  and i category in ('Sports', 'Books', 'Home')
  and ss sold date sk = d date sk
  and cast(d date as date) between cast('1999-02-22' as date)
           and (cast('1999-02-22' as date) + interval '30' day)
GROUP BY
  i item id, i item desc, i category, i class, i current price
```

ORDER BY

i_category, i_class, i_item_id, i_item_desc, revenueratio

TPCDS 10 TB

Highly selective dimension filter that retains only one month out of 5 years of data

Conclusion

Apache Spark 3.0 introduces Dynamic Partition Pruning

- Strawman approach at logical planning time
- Optimized approach during execution time

Significant speedup, exhibited in many TPC-DS queries

With this optimization Spark may now work good with star-schema queries, making it unnecessary to ETL denormalized tables.

databricks

Thanks!

Bogdan Ghit - <u>linkedin.com/in/bogdanghit</u>

Juliusz Sompolski - linkedin.com/in/juliuszsompolski

