
1

Achieving Fairness and High-Performance
in Datacenter Scheduling

Bogdan Ghit

Parallel and Distributed Systems
Delft University of Technology

Delft, the Netherlands

2

Research context

From UNECE Statistics From Cisco IBSG

Growing volumes of data and users.

Applications run on clusters of thousands of nodes:
•  Web search
•  Social networks
•  Apple’s Siri

3

What is big data?

Hive

MapReduce Model

Hadoop/
YARN

HDFS
Storage Engine

Execution Engine

High-Level Language

Programming Model

Asterix
B-tree

Algebrix

Hyracks

AQL

Dremel
Service

Tree

SQL Pig JAQL

PACT

MPI/
Erlang

LFS

Nephele Dryad Haloop

DryadLINQ Scope

Pregel

CosmosFS

Azure
Engine

Tera
Data

Engine

Azure
Data
Store

Tera
Data
Store

Voldemort GFS

BigQuery Flume

Flume
Engine

S3

Dataflow

Giraph

Sawzall Meteor

Adapted from: Dagstuhl Seminar on Information Management in the Cloud,
http://www.dagstuhl.de/program/calendar/partlist/?semnr=11321&SUOG

Too big, too fast, mismatch with traditional DB.

Many execution engines, difficult to have all of them.

Large array of applications, but little performance
information exposed.

4

In this talk

(1)  Designing Fawkes, a scheduling system for
dynamic (re-)allocation of the datacenter resources
to multiple (groups of) users.

(2)  Analyzing fundamental scheduling problems in
datacenters: performance isolation, resource
partitioning, fairness.

(3)  Designing Tyrex, a scheduling system that reduces
the job slowdown variability in data-intensive
workloads.

5

The experimental testbed: DAS

•  10+ years of system research
•  300+ scientists as users

VU (148 CPUs)

TU Delft (64) Leiden (32)

SURFnet6

10 Gb/s lambdas

Astron (46)

UvA/MN (72)
UvA (32)

200 dual-quad-core compute nodes
 24 GB memory per node
 150 TB total storage
 20 Gpbs QDR InfiniBand network

400

FDR

6

The KOALA multicluster scheduler

LRM LRM LRM

Parallel MPI jobs
Workflows
Bags-of-tasks

This talk: MapReduce frameworks

Koala-C

Our research vehicle
Deployed on DAS since 2005

7

The MapReduce framework

Programming model
o  Transforms data flowing from stable storage to stable storage.
o  Jobs are split into tasks that run on slots.

8

MapReduce explained

9

Inside the elephant: the HDFS
Traditional assumptions and goals:
•  “HDFS apps. need a write-once-read-many access model for files.”
•  “Hardware failure is the norm rather than the exception.”
•  “Moving computation is cheaper than moving data.”

NameNode
Input file

128 MB data blocks

10

Multiple users need multiple frameworks

Data isolation
Failure isolation
Version isolation

Performance isolation
•  Appealing to companies and users
•  Difficult to achieve and define
•  No one framework optimal for any user
•  Dynamic infrastructure for data processing

11

Dynamic Big Data Processing

FAWKES

NODES

Frameworks

Job submissions

Resource manager

Infrastructure NODES NODES NODES NODES NODES NODES NODES NODES

FAWKES

B.I. Ghit, N. Yigitbasi, A. Iosup, D.H.J. Epema, “Balanced
Resource Allocations across Multiple Dynamic MapReduce
Clusters”, ACM Sigmetrics 2014.

Fawkes = elastic MapReduce via two-level scheduling

12

Elastic MapReduce

Growing and shrinking MapReduce:
•  Distributed file system
•  Execution engine
•  Data locality constraints

GROW

SHRINK

Because workloads may be time-varying:
•  Poor resource utilization
•  Imbalanced service levels

NODES NODES NODES

13

How hard it really is?

Growing and shrinking MapReduce:
(1) Break data locality
(2) Policies to differentiate frameworks

Core 1. Distributed file system
•  Big data is hard to move
•  We need a fixed core extended
by transient nodes (data locality)

Transient

2. Execution engine
•  Re-scheduling killed tasks
•  We need to control the frequency

of reconfigurations (policies)

Scheduler

14

Resizing MapReduce: no data locality

INPUT/OUTPUT DATA

Core nodes Transient nodes (TR)

o  No local storage
o  R/W from/to core nodes
o  Instant removal

o  Classical deployment
o  Uniform data distribution
o  No removal

NO DATA

GROW

SHRINK

15

Resizing MapReduce: relaxed data locality

Trans-core nodes (TC)

 OUTPUT DATA

o  Local storage, no input
o  Only R from core nodes
o  Delayed removal

INPUT/OUTPUT DATA

Core nodes

o  Classical deployment
o  Uniform data distribution
o  No removal

GROW

SHRINK

16

How to differentiate frameworks (1/3)

versus

Service Usage Demand

By demand – 3 policies:
o  Job Demand (JD)
o  Data Demand (DD)
o  Task Demand (TD)

17

How to differentiate frameworks (2/3)

Service Usage Demand

By usage – 3 policies:
o  Processor Usage (PU)
o  Disk Usage (DU)
o  Resource Usage (RU)

USED

IDLE

versus

18

How to differentiate frameworks (3/3)

Service Usage Demand

By service – 3 policies:
o  Job Slowdown (JS)
o  Job Throughput (JT)
o  Task Throughput (TT)

versus

19

Fairness or balanced service levels
MR framework shares are proportional to their weights
•  Weights are set from the system operation
•  Temporal discrimination = current share – entitled share

∫ −=
2

1

))()((),(21

t

t iii dttwtcttD
D-

D+

Var(D)> τ

Measure of imbalance:

∑
=

j

i
i w

ws
w1 w2 w3 < <

20

The grow-shrink mechanism

FAWKES

Core TR/TC

w > wmin

wmin w=0

FAWKES

(1) Admission policy
•  Min. share guarantees
•  Queue it if no free capacity

(3) Shrinking Mechanism
•  Frameworks above their fair shares
•  Instant preemption – TR nodes
•  Delayed preemption – TC nodes

(2) Growing Mechanism
•  Frameworks below their fair shares
•  No locality – TR nodes
•  Relaxed locality – TC nodes

21

It’s a complex system

Our methodology to evaluate the system:
1.  Design relevant workloads
2.  Evaluate separate aspects of the system
3.  Evaluate the full system

More than 60,000 hours system time!

22

MapReduce workloads

Non-linear
scaling

 B. Ghit, M. Capota, T. Hegeman, D. Epema, A. Iosup. V for Vicissitude:
The Challenge of Scaling Complex Big Data Workflows. In ACM/IEEE CCGrid
(Winner of Scale Challenge 2014)

23

Performance of no versus relaxed locality

o  Single-application performance overhead
o  10 core nodes + 10 transient/transient-core nodes

42
Transient
Transient-core

Complete workflow on 100 GB

24

Performance of Fawkes: closed system
 FAWKES with static allocation

FAWKES with TD weighting
Closed system
o  c-1: 90 x 1 GB sort jobs

o  c-2: 5 x 50 GB sort jobs

o  c-3: 5 x100 GB sort jobs

Nodes 45
Frameworks 3
Min. shares 10
Datasets 200 GB
Jobs submitted 100

25

Performance of Fawkes: open system

Nodes 45
Frameworks 3
Min. shares 10
Datasets 300 GB
Jobs submitted 900

None – Minimum shares
EQ – EQual shares
TD – Task Demand
PU – Processor Usage
JS – Job Slowdown

Up to 20% lower slowdown

Policy

Av
g.

 S
lo

w
do

w
n

c-1 c-2 c-3

Open system
o  Poisson arrivals
o  c-1: 1 – 100 GB Wordcount and Sort jobs
o  c-2, c-3: 1 GB Wordcount and Sort jobs

26

Fawkes behind the scenes

EQ

Imbalanced

More balanced

Utilizations: 50% / 30% / 8%
TD

Utilizations: 60% / 23% / 5%

highest
load

medium
load

minimum
load

highest
load

medium
load

minimum
load

27

Can we do better?

MapReduce workloads
•  Challenging for existing schedulers
•  High job size variability
•  Short jobs prevail, but long jobs dominate

FIFO with a Facebook trace

28

Job slowdown variability
Definitions:
•  Job size = sum of its task runtimes
•  Job slowdown = ratio between the sojourn time and the runtime in isolation
•  Job slowdown variability = ratio between job slowdown at the 95th

percentile and the median job slowdown

FIFO with a Facebook trace

B.I. Ghit and D.H.J. Epema, “Reducing Job Slowdown Variability
for Data-Intensive Workloads”, IEEE MASCOTS 2015.

29

Size-based scheduling
Previous work:
•  PS has job slowdown independent of job size:

•  SRPT is response time-optimal, but jobs may starve.

E[S(x)]= 1
1− ρ

1.  Logical partitioning

•  Allocate processors to disjoint partitions
•  Restrict amount of service offered to jobs

2.  System feedback
•  Job preemption in a work-conserving way
•  Pause/resume jobs using HDFS

Main mechanisms:

Partitions
AND
Feedback

Only
Feedback

Only Partitions None

30

The FBQ policy

 1
 L1

 L2

Job arrivals Waiting Queues

 C1

 C2

 CK

Processors

 2

 K
 LK

... ...

•  Uses feedback, but no resource partitioning
•  When job reaches queue time limit, then it is paused and

moved to a lower priority queue.

Partitions NO
Feedback YES

L.E. Schrage, “The M/G/1 queue with feedback to lower priority
queues”, Management Sciences, 1967.

31

The TAGS policy

 1
 L1

 L2

Job arrivals Waiting Queues

 C1

 C2

 CK

Processors

 2

 K
 LK

... ...

•  Uses feedback, but each queue has its own partition
•  When job reaches queue time limit, then it is paused and

resumed at the next queue.

Partitions YES
Feedback YES

M. Harchol-Balter, “Task assignment with unknown durations”,
Distributed Computing Systems, 2001.

32

The SITA policy

 1
 L1

 L2

Job arrivals Waiting Queues

 C1

 C2

 CK

Processors

 2

 K
 LK

... ...

•  Per-queue resource partitions, but no feedback
•  Dispatch jobs to queues based on their sizes

Partitions YES
Feedback NO

+PREDICTION

M. Harchol-Balter et. al., “On choosing a task assignment policy for a
distributed server system”, Parallel and Distributed Computing, 1999.

33

The COMP policy

 1
 L1

 L2

Job arrivals Waiting Queues

 C1

 C2

 CK

Processors

 2

 K
 LK

... ...

•  No resource partitioning, no feedback
•  Append to queue m+1 if larger than m of the last

K-1 completed jobs

Partitions NO
Feedback NO

+PREDICTION

Jian Tan et. al., “Adaptive scalable comparison scheduling”,
SIGMETRICS, 2007.

34

Contrasting the policies

Previous work Our work

•  Single or distributed-server model •  Datacenters with very large capacity

•  Simple, rigid non-preemptive jobs •  Malleable MapReduce jobs

•  Wasted work by killing jobs •  Work-conserving approach

35

Simulator validation (1/2)
Apache Mumak with two main improvements:
•  Accurately modeling of the shuffle phase
•  Removal of the periodic heartbeat in JT-TT communication

Mumak versus Hadoop on DAS-4
•  10 nodes with 6 map slots and 2 reduce slots
•  Single jobs: Grep, Sort, Wordcount

36

Simulator validation (2/2)

0

5

10

15

FBQ TAGS SITA COMP
Policy

Sl
ow
do
w
n

System
SIM
DAS

FBQ TAGS SITA COMP
Policy

•  Workload of 50 jobs, sys. load of 0.7

•  Less than 1% error between SIM and DAS

Median 95th

37

Facebook workload (1/2)

0

100

200

300

400

101 102 103 104

Runtime [s]

D
en

si
ty

•  Workload of 60 h of simulated time
•  Very variable distribution: CV2=16.35
•  Mumak with 100 simulated nodes

•  Less than 8% of the jobs = 50% of the total load

38

Facebook workload (2/2)

●●●●●●●

●

●●●

●

●●●●●
●
●

●●

●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●●

●

●

●

●

●
●●

●
●●●

●
●●●

●

●

●●●

●

● ●

●

●

●

●

●

●●●●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●
●
●●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●●●●
●

●

●●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●●
●

●
●●●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

● ●●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●
●

●

●●

●

●

●

●

●●●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●●

●

●
●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

0

1

2

3

4

5

0 500 1000 1500

Map Tasks

Jo
b

Si
ze

 [h
]

•  Strong correlation between job input size and job
proc. requirement

39

Load unbalancing

●

● ● ●
●

0.00

0.25

0.50

0.75

1.00

10 20 30 40 50
Capacity of partition 1 [%]

Ut
iliz

at
io

n

● Partition 1 Partition 2

●
●

●

● ●

0.00

0.25

0.50

0.75

1.00

10 20 30 40 50
Capacity of partition 1 [%]

Ut
iliz

at
io

n

● Partition 1 Partition 2

TAGS SITA

•  Partition 1 has significantly lower load than partition 2
•  Higher load in partition 2 with TAGS than with SITA

40

Fairness analysis (1/2)

0

5

10

15

75 85 95
Percentile

Jo
b

Sl
ow

do
w

n
Va

ria
bi

lit
y

Policy
FIFO

TAGS

SITA

FBQ

COMP

•  All policies improve over FIFO
•  TAGS and SITA shift variability to partition 2

 FBQ < SITA < TAGS < COMP < FIFO

Best Worst

41

Fairness analysis (2/2)

●

●

●

●

●

●

●

●
●

0

5

10

15

20

101 102 103 104 105

Job Size [s]

M
ea

n
Jo

b
Sl

ow
do

w
n

Policy
● FIFO

TAGS

SITA

FBQ

COMP

FBQ < SITA < COMP < TAGS < FIFO

Best Worst

42

Tyrex: size-based resource allocation

•  Based on previous design guidelines
•  The cutoffs do not have closed forms
•  May need to be recomputed frequently

...

43

Workload analysis

Migrate jobs that are likely to be way larger than the rest

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●

●●●
●●

●●
●●●

●●●
●●

●●
●●

●●●
●●

●●
●●

●●
●●●

●●
●●●

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000
Cutoff point [s]

Sq
ua

re
d

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

● Lp Rp

•  Reduce the imbalance between Lp and Rp
•  Aim for squared CV lower than 2 in any partition

Lp = min(X, p)
Rp = X – p

44

The DynamicTags policy

X = distribution of the current partial job size

When the squared CV in a partition is higher than 2, then
migrate all jobs that exceed the optimal cutoff point

•  Lp captures the notion of young jobs
•  Rp represents the residual lifetime of jobs
•  Optimal cutoff point p: CV2(Lp) = CV2(Rp)
•  Old jobs with large residual lifetimes are migrated

45

Real-world workloads (1/3)

0.00

0.25

0.50

0.75

1.00

<1 1−10 10−100 >100
Job Size [min]

Fr
ac

tio
n

of
 jo

bs

 HVW
CV2=20

46

Real-world workloads (2/3)

0.00

0.25

0.50

0.75

1.00

<1 1−10 10−100 >100
Job Size [min]

 MVW
CV2=10

47

Real-world workloads (3/3)

0.00

0.25

0.50

0.75

1.00

<1 1−10 10−100 >100
Job Size [min]

 LVW
CV2=4

48

Fraction of jobs completed per partition

0.00

0.25

0.50

0.75

1.00

HVW MVW LVW
Workload

Partition 1 Partition 2

•  As the workload variability decreases, Tyrex migrates
more jobs to partition 2.

C1 = 30%

Fr
ac

tio
n

of
 jo

bs

49

Load distribution across partitions

●
●

●

0.00

0.25

0.50

0.75

1.00

HVW MVW LVW
Workload

● Partition 1 Partition 2

•  Tyrex is rather aggressive in migrating jobs to partition 2
C1 = 30%

U
til

iz
at

io
n

50

Slowdown performance of Tyrex

•  Good slowdown performance for all workloads
•  Similar improvements no matter the partition sizes

0

1

2

3

4

5

HVW MVW LVW
Workload

Median
slowdown

Slowdown
variability

C1 = 20%

0

1

2

3

4

5

HVW MVW LVW
Workload

Median
slowdown

Slowdown
variability

C1 = 30%

51

Dynamic timers

●
●

●
● ●●

●
● ● ●●●●●●

●
●
●
●
● ●●●

●

●●●●

● ●

●●●● ●●●

●

●● ●● ●

●

●0

500

1000

1500

2000

2500

0 600 1200 1800
Time [s]

Ti
m

er
 [s

]

● HVW LVW MVW

•  Converges to lower values for more variable distributions
•  Exactly the range of values that equalizez the squared CV

C1 = 30%

52

Improvements from Tyrex

0

1

2

3

4

5

FIFO FAIR StaticTags DynamicTags
Policy

Median
Slowdown

Slowdown
Variability

•  Tyrex cuts in half the job slowdown variability
 when compared to FIFO and FAIR

 HVW
CV2=20

C1 = 20%

53

Key takeaways

Big data = system of systems
•  The stack of systems exposes many trade-offs
•  Both fairness and performance are important
•  Both simulation and experimentation are needed

In this talk
•  New MR abstraction for elastic data processing
•  Fawkes balances allocations even for highly imbalanced workloads
•  Two main techniques to reduce the job slowdown variability
•  Tyrex delivers competitive performance with the optimal parameter setting

54

TODO

Our research group

More information
o  www.publications.st.ewi.tudelft.nl
o  www.pds.ewi.tudelft.nl/ghit
o  www.pds.ewi.tudelft.nl/epema

FAWKES

55

TODO

56

TODO

TODO

