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Research context 

From UNECE Statistics From Cisco IBSG 

Growing volumes of data and users. 

Applications run on clusters of thousands of nodes: 
•  Web search 
•  Social networks 
•  Apple’s Siri 
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What is big data? 

Hive 

MapReduce Model  

Hadoop/ 
YARN 

HDFS 
Storage Engine 

Execution Engine 

High-Level Language 

Programming Model 

Asterix  
B-tree 

Algebrix 

Hyracks 

AQL 

Dremel 
Service 

Tree 

SQL Pig JAQL 

PACT 

MPI/ 
Erlang 

LFS 

Nephele Dryad Haloop 

DryadLINQ Scope 

Pregel 

CosmosFS 

Azure 
Engine 

Tera 
Data 

Engine 

Azure 
Data 
Store 

Tera 
Data 
Store 

Voldemort GFS 

BigQuery Flume 

Flume 
Engine 

S3 

Dataflow 

Giraph 

Sawzall Meteor 

Adapted from: Dagstuhl Seminar on Information Management in the Cloud, 
http://www.dagstuhl.de/program/calendar/partlist/?semnr=11321&SUOG  

Too big, too fast, mismatch with traditional DB. 

Many execution engines, difficult to have all of them. 

Large array of applications, but little performance 
information exposed. 
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In this talk 

(1)  Designing Fawkes, a scheduling system for 
dynamic (re-)allocation of the datacenter resources 
to multiple (groups of) users.   

(2)  Analyzing fundamental scheduling problems in 
datacenters: performance isolation, resource 
partitioning, fairness. 

(3)  Designing Tyrex, a scheduling system that reduces 
the job slowdown variability in data-intensive 
workloads. 
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The experimental testbed: DAS 

•  10+ years of system research 
•  300+ scientists as users 
 

 
 
 

VU (148 CPUs) 

TU Delft (64) Leiden (32) 

SURFnet6 

10 Gb/s lambdas 

Astron (46) 

UvA/MN (72) 
UvA (32) 

200 dual-quad-core compute nodes 
  24 GB memory per node 
 150 TB total storage 
  20 Gpbs QDR InfiniBand network 

400 

FDR 
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The KOALA multicluster scheduler 

LRM LRM LRM 

Parallel MPI jobs 
Workflows 
Bags-of-tasks 

This talk: MapReduce frameworks 

Koala-C 

Our research vehicle 
Deployed on DAS since 2005 
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The MapReduce framework 

Programming model 
o  Transforms data flowing from stable storage to stable storage. 
o  Jobs are split into tasks that run on slots. 
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MapReduce explained 
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Inside the elephant: the HDFS 
Traditional assumptions and goals: 
•  “HDFS apps. need a write-once-read-many access model for files.” 
•  “Hardware failure is the norm rather than the exception.” 
•  “Moving computation is cheaper than moving data.” 

NameNode 
Input file 

128 MB data blocks 
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Multiple users need multiple frameworks 

Data isolation 
Failure isolation 
Version isolation 

Performance isolation 
•  Appealing to companies and users 
•  Difficult to achieve and define 
•  No one framework optimal for any user 
•  Dynamic infrastructure for data processing 
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Dynamic Big Data Processing 

FAWKES 

NODES 

Frameworks 

Job submissions 

Resource manager 

Infrastructure NODES NODES NODES NODES NODES NODES NODES NODES 

FAWKES 

B.I. Ghit, N. Yigitbasi, A. Iosup, D.H.J. Epema, “Balanced 
Resource Allocations across Multiple Dynamic MapReduce 
Clusters”, ACM Sigmetrics 2014. 

Fawkes = elastic MapReduce via two-level scheduling 
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Elastic MapReduce 

Growing and shrinking MapReduce: 
•  Distributed file system 
•  Execution engine 
•  Data locality constraints  

 
 
 
 
 

GROW 

SHRINK 

Because workloads may be time-varying: 
•  Poor resource utilization 
•  Imbalanced service levels 

NODES NODES NODES 
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How hard it really is? 

Growing and shrinking MapReduce: 
(1) Break data locality 
(2) Policies to differentiate frameworks 

 
 
 
 
 

Core 1. Distributed file system 
•  Big data is hard to move 
•  We need a fixed core extended 
by transient nodes (data locality) 
 

 

Transient 

2. Execution engine 
•  Re-scheduling killed tasks 
•  We need to control the frequency 

of reconfigurations (policies) 

 

Scheduler 
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Resizing MapReduce: no data locality 

INPUT/OUTPUT DATA  

Core nodes Transient nodes (TR) 

o  No local storage 
o  R/W from/to core nodes 
o  Instant removal 

o  Classical deployment 
o  Uniform data distribution 
o  No removal 

NO DATA  

GROW 

SHRINK 
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Resizing MapReduce: relaxed data locality 

Trans-core nodes (TC) 

 OUTPUT DATA  

o  Local storage, no input 
o  Only R from core nodes 
o  Delayed removal 

 
 

INPUT/OUTPUT DATA  

Core nodes 

o  Classical deployment 
o  Uniform data distribution 
o  No removal 

GROW 

SHRINK 
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How to differentiate frameworks (1/3)  

versus 

Service Usage Demand 

By demand – 3 policies: 
o  Job Demand (JD) 
o  Data Demand (DD) 
o  Task Demand (TD) 
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How to differentiate frameworks (2/3)  

Service Usage Demand 

By usage – 3 policies: 
o  Processor Usage (PU) 
o  Disk Usage (DU) 
o  Resource Usage (RU) 

USED 

IDLE 

versus 
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How to differentiate frameworks (3/3)  

Service Usage Demand 

By service – 3 policies: 
o  Job Slowdown (JS) 
o  Job Throughput (JT) 
o  Task Throughput (TT) 

versus 
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Fairness or balanced service levels 
MR framework shares are proportional to their weights 
•  Weights are set from the system operation 
•  Temporal discrimination = current share – entitled share 
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The grow-shrink mechanism 

FAWKES 

Core TR/TC 

w > wmin  

wmin w=0 

FAWKES 

(1) Admission policy 
•  Min. share guarantees 
•  Queue it if no free capacity 

(3) Shrinking Mechanism 
•  Frameworks above their fair shares 
•  Instant preemption – TR nodes 
•  Delayed preemption – TC nodes 

(2) Growing Mechanism  
•  Frameworks below their fair shares 
•  No locality – TR nodes 
•  Relaxed locality – TC  nodes 
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It’s a complex system 

Our methodology to evaluate the system: 
1.  Design relevant workloads 
2.  Evaluate separate aspects of the system 
3.  Evaluate the full system 

More than 60,000 hours system time! 



22 

MapReduce workloads 

Non-linear 
scaling 

 B. Ghit, M. Capota, T. Hegeman, D. Epema, A. Iosup. V for Vicissitude:  
The Challenge of Scaling Complex Big Data Workflows. In ACM/IEEE CCGrid  
(Winner of Scale Challenge 2014) 
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Performance of no versus relaxed locality  

o   Single-application performance overhead 
o  10 core nodes + 10 transient/transient-core nodes 

42 
Transient 
Transient-core 

Complete workflow on 100 GB 
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Performance of Fawkes: closed system 
 FAWKES with static allocation 

FAWKES with TD weighting 
Closed system 
o  c-1:  90 x 1 GB sort jobs 

o  c-2:  5 x 50 GB sort jobs 

o  c-3:  5 x100 GB sort jobs 
 

Nodes 45 
Frameworks 3 
Min. shares 10 
Datasets 200 GB 
Jobs submitted 100 
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Performance of Fawkes: open system 
 

Nodes 45 
Frameworks 3 
Min. shares 10 
Datasets 300 GB 
Jobs submitted 900  

None – Minimum shares 
EQ – EQual shares 
TD – Task Demand 
PU – Processor Usage 
JS – Job Slowdown 

Up to 20% lower slowdown 

Policy 

Av
g.

 S
lo

w
do

w
n 

c-1 c-2 c-3 

Open system 
o  Poisson arrivals 
o  c-1: 1 – 100 GB Wordcount and Sort jobs 
o  c-2, c-3: 1 GB Wordcount and Sort jobs 
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Fawkes behind the scenes 

EQ 

Imbalanced 

More balanced 

Utilizations: 50% / 30% / 8% 
TD 

Utilizations:  60% / 23% / 5% 

highest 
load 

medium 
load 

minimum 
load 

highest 
load 

medium 
load 

minimum 
load 
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Can we do better? 

MapReduce workloads 
•  Challenging for existing schedulers 
•  High job size variability 
•  Short jobs prevail, but long jobs dominate 

FIFO with a Facebook trace 
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Job slowdown variability 
Definitions: 
•  Job size = sum of its task runtimes 
•  Job slowdown = ratio between the sojourn time and the runtime in isolation 
•  Job slowdown variability = ratio between job slowdown at the 95th 

percentile and the median job slowdown 

FIFO with a Facebook trace 

B.I. Ghit and D.H.J. Epema, “Reducing Job Slowdown Variability 
for Data-Intensive Workloads”, IEEE MASCOTS 2015. 
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Size-based scheduling 
Previous work: 
•  PS has job slowdown independent of job size: 
 
•  SRPT is response time-optimal, but jobs may starve. 

E[S(x)]= 1
1− ρ

 
1.  Logical partitioning 

•  Allocate processors to disjoint partitions 
•  Restrict amount of service offered to jobs 
 

2.  System feedback 
•  Job preemption in a work-conserving way 
•  Pause/resume jobs using HDFS 

Main mechanisms: 

Partitions 
AND 
Feedback 

Only 
Feedback 

Only Partitions None 
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The FBQ policy 

 1
 L1

 L2

Job arrivals Waiting Queues

   C1

   C2

   CK

Processors

 2

 K
 LK

... ...

•  Uses feedback, but no resource partitioning 
•  When job reaches queue time limit, then it is paused and 

moved to a lower priority queue. 

Partitions NO 
Feedback YES 

L.E. Schrage, “The M/G/1 queue with feedback to lower priority 
queues”, Management Sciences, 1967. 
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The TAGS policy 

 1
 L1

 L2

Job arrivals Waiting Queues

   C1

   C2

   CK

Processors

 2

 K
 LK

... ...

•  Uses feedback, but each queue has its own partition 
•  When job reaches queue time limit, then it is paused and 

resumed at the next queue. 

Partitions YES 
Feedback YES 

M. Harchol-Balter, “Task assignment with unknown durations”, 
Distributed Computing Systems, 2001. 
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The SITA policy 

 1
 L1

 L2

Job arrivals Waiting Queues

   C1

   C2

   CK

Processors

 2

 K
 LK

... ...

•  Per-queue resource partitions, but no feedback 
•  Dispatch jobs to queues based on their sizes 

Partitions YES 
Feedback NO 

+PREDICTION 

M. Harchol-Balter et. al., “On choosing a task assignment policy for a 
distributed server system”, Parallel and Distributed Computing, 1999. 
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The COMP policy 

 1
 L1

 L2

Job arrivals Waiting Queues

   C1

   C2

   CK

Processors

 2

 K
 LK

... ...

•  No resource partitioning, no feedback 
•  Append to queue m+1 if larger than m of the last 

K-1 completed jobs 

Partitions NO 
Feedback NO 

+PREDICTION 

Jian Tan et. al., “Adaptive scalable comparison scheduling”, 
SIGMETRICS, 2007. 
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Contrasting the policies 

Previous work Our work 

•  Single or distributed-server model •  Datacenters with very large capacity 

•  Simple, rigid non-preemptive jobs •  Malleable MapReduce jobs 

•  Wasted work by killing jobs •  Work-conserving approach 
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Simulator validation (1/2) 
Apache Mumak with two main improvements: 
•  Accurately modeling of the shuffle phase 
•  Removal of the periodic heartbeat in JT-TT communication 
 
Mumak versus Hadoop on DAS-4 
•  10 nodes with 6 map slots and 2 reduce slots 
•  Single jobs: Grep, Sort, Wordcount 
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Simulator validation (2/2) 

0

5

10

15

FBQ TAGS SITA COMP
Policy

Sl
ow
do
w
n

System
SIM
DAS

FBQ TAGS SITA COMP
Policy

•  Workload of 50 jobs, sys. load of 0.7 

•  Less than 1% error between SIM and DAS 

Median 95th 



37 

Facebook workload (1/2) 

0

100

200

300

400

101 102 103 104

Runtime [s]

D
en

si
ty

•  Workload of 60 h of simulated time 
•  Very variable distribution: CV2=16.35 
•  Mumak with 100 simulated nodes 

•  Less than 8% of the jobs = 50% of the total load 
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Facebook workload (2/2) 
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•  Strong correlation between job input size and job 
proc. requirement 
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Load unbalancing 

●

● ● ●
●
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•  Partition 1 has significantly lower load than partition 2 
•  Higher load in partition 2 with TAGS than with SITA 
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Fairness analysis (1/2) 

0

5

10

15

75 85 95
Percentile
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bi

lit
y

Policy
FIFO

TAGS

SITA

FBQ

COMP

•  All policies improve over FIFO 
•  TAGS and SITA shift variability to partition 2 
 
     FBQ < SITA < TAGS < COMP < FIFO 

Best Worst 
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Fairness analysis (2/2) 
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Best Worst 
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Tyrex: size-based resource allocation 

•  Based on previous design guidelines 
•  The cutoffs do not have closed forms 
•  May need to be recomputed frequently 

...
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Workload analysis 

Migrate jobs that are likely to be way larger than the rest   
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● Lp Rp

•  Reduce the imbalance between Lp and Rp 
•  Aim for squared CV lower than 2 in any partition 

Lp = min(X, p) 
Rp = X – p 
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The DynamicTags policy 

X = distribution of the current partial job size 

When the squared CV in a partition is higher than 2, then 
migrate all jobs that exceed the optimal cutoff point  

•  Lp captures the notion of young jobs 
•  Rp represents the residual lifetime of jobs 
•  Optimal cutoff point p: CV2(Lp) = CV2(Rp) 
•  Old jobs with large residual lifetimes are migrated 
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Real-world workloads (1/3) 
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Real-world workloads (2/3) 
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Real-world workloads (3/3) 
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Fraction of jobs completed per partition 
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•  As the workload variability decreases, Tyrex migrates 
more jobs to partition 2.  

C1 = 30% 
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Load distribution across partitions 
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•  Tyrex is rather aggressive in migrating jobs to partition 2 
C1 = 30% 
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Slowdown performance of Tyrex 

•  Good slowdown performance for all workloads 
•  Similar improvements no matter the partition sizes 
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Dynamic timers 
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•  Converges to lower values for more variable distributions 
•  Exactly the range of values that equalizez the squared CV 

C1 = 30% 
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Improvements from Tyrex 
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•  Tyrex cuts in half the job slowdown variability  
    when compared to FIFO and FAIR 
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Key takeaways 

Big data = system of systems 
•  The stack of systems exposes many trade-offs 
•  Both fairness and performance are important 
•  Both simulation and experimentation are needed 
 
 
In this talk 
•  New MR abstraction for elastic data processing 
•  Fawkes balances allocations even for highly imbalanced workloads 
•  Two main techniques to reduce the job slowdown variability  
•  Tyrex delivers competitive performance with the optimal parameter setting 
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TODO 

Our research group 
 

More information 
o  www.publications.st.ewi.tudelft.nl 
o  www.pds.ewi.tudelft.nl/ghit 
o  www.pds.ewi.tudelft.nl/epema 

FAWKES 



55 

TODO 
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