
Making Apache Spark SQL Fast with 
Dynamic Partition Pruning

UvA, February 2020
1

Bogdan Ghit 



2

2018-present Software Engineer at Databricks
- Performance optimizations in the SQL-engine
- Cloud infrastructure for Business Intelligence Workloads

2012-2017 PhD in Computer Science from TU Delft
- Scheduling and resource allocation for big data frameworks
- Algorithmic aspects that arise in datacenters

2016 Research Intern at IBM Research T.J. Watson
- Spot instance bid performance model
- Intersection of queueing theory and experimentation



Databricks Ecosystem

3

ToolsDevelopers

DBR Cluster Manager

Infrastructure Customers



Spark In a Nutshell

 Query Logical Plan
Optimization

Physical Plan 
Selection

RDD batches

Cluster slots

Stats-based 
cost model

Rule-based
transformations

APIs



SQL AST

DataFrame

Unresolved 
Logical Plan Logical Plan Optimized 

Logical Plan RDDsSelected 
Physical Plan

Analysis
Logical

Optimization
Physical
Planning

Co
st

 M
od

el

Physical 
Plans

Code
Generation

Catalog

Catalyst as a Query Compiler

Catalyst is a functional, extensible query optimizer used by Spark SQL.
- Leverages advanced FP language (Scala) features

- Contains a library for representing trees and applying rules on them



Trees in Catalyst

 Examples:
- Literal(value: Int)
- Attribute(name: String)
- Add(left: TreeNode, right: TreeNode)

Add(Attribute(x), Add(Literal(1), Literal(2)))

Tree is the main data structure used in Catalyst
- A tree is composed of node objects
- A node has a node type and zero or more children
- Node types are defined in Scala as subclasses of the TreeNode class



Rules in Catalyst
Rules are functions that transform trees

- Typically functional, leverage pattern matching
- TreeNode.transformDown (pre-order traversal)
- TreeNode.transformUp (post-order traversal)

tree.transform {
  case Add(Literal(c1), Literal(c2)) => Literal(c1 + c2)
  case Add(left, Literal(0)) => left
  case Add(Literal(0), right) => right
} PATTERN

TRANSFORMATION



TPCDS Q98 on 10 TB

How to Make a Query 100x Faster?



Static Partition Pruning
SELECT * FROM Sales WHERE day_of_week = ‘Mon’

Filter

Scan

Basic data-flow

Filter

Scan

Filter Push-down

Filter

Scan

Partition files with 
multi-columnar data



Table Denormalization
SELECT * FROM Sales JOIN Date
WHERE Date.day_of_week = ‘Mon’

Static pruning not possible

Scan
Sales

Filter
day_of_week = ‘mon’

Join

Simple workaround

Scan
Sales

Join

Scan
Date

Filter
day_of_week = ‘mon’

Scan

Scan
Date



This Talk

Dynamic pruning

Scan
Sales

Filter
day_of_week = ‘mon’

Join

SELECT * FROM Sales JOIN Date
WHERE Date.day_of_week = ‘Mon’

Scan
Countries



Optimization Opportunities

Data Layout

Partition files with 
multi-columnar data

Scan FACT TABLE Scan DIM TABLE

Non-partitioned dataset

Filter DIM

Join on partition id

Query Shape



A Simple Approach

Partition files with 
multi-columnar data

Scan FACT TABLE

Scan DIM TABLE

Non-partitioned dataset

Filter DIM

Join on partition id

Scan DIM TABLE

Filter DIM
Work duplication may be expensive

Heuristics based on inaccurate stats



Broadcast Hash Join

FileScan FileScan with Dim Filter

Non-partitioned dataset

BroadcastExchange

Broadcast Hash Join

Execute the build side 
of the join 

Place the result in a 
broadcast variableBroadcast the build 

side results

Execute the join 
locally without 
a shuffle



Reusing Broadcast Results

Partition files with 
multi-columnar data

FileScan

FileScan with Dim Filter

Non-partitioned dataset

BroadcastExchange

Broadcast Hash Join

Dynamic Filter



Experimental Setup
Workload Selection

- TPC-DS scale factors 1-10 TB

Cluster Configuration
- 10 i3.xlarge machines

Data-Processing Framework
- Apache Spark 3.0



TPCDS 1 TB

60 / 102 queries speedup between 2 and 18



Top Queries

Very good speedups for top 10% of the queries



Data Skipped

Very effective in skipping data



TPCDS 10 TB

Even better speedups at 10x the scale



Query 98
SELECT i_item_desc, i_category, i_class, i_current_price,
       sum(ss_ext_sales_price) as itemrevenue,
       sum(ss_ext_sales_price)*100/sum(sum(ss_ext_sales_price)) over
         (partition by i_class) as revenueratio
FROM
   store_sales, item, date_dim
WHERE
  ss_item_sk = i_item_sk
  and i_category in ('Sports', 'Books', 'Home')
  and ss_sold_date_sk = d_date_sk
  and cast(d_date as date) between cast('1999-02-22' as date)
           and (cast('1999-02-22' as date) + interval '30' day)
GROUP BY
  i_item_id, i_item_desc, i_category, i_class, i_current_price

ORDER BY
  i_category, i_class, i_item_id, i_item_desc, revenueratio



TPCDS 10 TB

Highly selective dimension filter that retains only 
one month out of 5 years of data



Random query generation

23

Query profile Model 
translator

Spark
Query

Postgres
Query

vs

vs



...
...

DDL and datagen

24

...

...

BigIntBoolean

Timestamp

Decimal

FloatInteger

SmallInt

String
Choose a data type

Random number of rows

Random number of columns

Random number of tables

Random partition columns



Recursive query model

25

SQL Query

WITH

FROMUNION

SELECT

Functions

Constant

GROUP BY
ORDER BY

Table

Column
Alias

Query

Clause

Expression

JOIN

WHERE



Probabilistic query profile
Independent weights
• Optional query clauses

Inter-dependent weights
• Join types
• Select functions

ORDER BY
UNION GROUP BY WHERE

10%

10%

50%
10%



Coalesce flattening (1/4)
SELECT COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3) AS int_col,
      IF(NULL, VARIANCE(COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)),       
      COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)) AS int_col_1,
      STDDEV(t2.double_col_2) AS float_col,
      COALESCE(MIN((t1.smallint_col_3) - (COALESCE(t2.smallint_col_3, t1.smallint_col_3,         
      t2.smallint_col_3))), COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3),       
      COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)) AS int_col_2
FROM table_4 t1
INNER JOIN table_4 t2 ON (t2.timestamp_col_7) = (t1.timestamp_col_7)
WHERE (t1.smallint_col_3) IN (CAST('0.04' AS DECIMAL(10,10)), t1.smallint_col_3)
GROUP BY COALESCE(t2.smallint_col_3, t1.smallint_col_3, t2.smallint_col_3)

 

Small dataset with 2 tables of 5x5 size
Within 10 randomly generated queries

Error: Operation is in ERROR_STATE



Coalesce flattening (2/4)
Aggregate

Project

Join

FILTERSCAN foo

SCAN bar

foo.id IN 
(CAST(‘0.04’ AS DECIMAL(10, 10)), foo.id)

foo.ts  = bar.ts

COALESCE(COALESCE(foo.id, foo.val), 88)

GROUP BY COALESCE(foo.id, foo.val)



Coalesce flattening (3/4)
Aggregate

Project

Join

FILTERSCAN foo

SCAN bar

foo.id IN 
(CAST(‘0.04’ AS DECIMAL(10, 10)), foo.id)

foo.ts  = bar.ts

COALESCE(COALESCE(foo.id, foo.val), 88)

GROUP BY COALESCE(foo.id, foo.val)



Coalesce flattening (4/4)
Aggregate

Project

SCAN foo

Minimized query:
SELECT 
   COALESCE(COALESCE(foo.id, foo.val), 88)
FROM foo 
GROUP BY 
   COALESCE(foo.id, foo.val)

Analyzing the error
● The optimizer flattens the nested coalesce calls
● The SELECT clause doesn’t contain the GROUP BY expression
● Possibly a problem with any GROUP BY expression that can be optimized



Conclusion 
Apache Spark 3.0 introduces Dynamic Partition Pruning

- Strawman approach at logical planning time
- Optimized approach during execution time

Significant speedup, exhibited in many TPC-DS queries

With this optimization Spark may now work good with star-schema 
queries, making it unnecessary to ETL denormalized tables.



32

Bogdan Ghit - https://bogdanghit.github.io/

https://bogdanghit.github.io/

