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Abstract—Large cloud providers offer spot instances at at-
tractive prices to improve resource utilization, resulting in a
spot market where users bid for resources and providers alter
prices dynamically. As prices surpass bid values, resources may
be relinquished from users with low bids. Achieving predictable
performance on spot markets is challenging for data analytics
workloads because they are very sensitive to preemptions due to
the excessive cost of recomputations.

We introduce CAPRI, a scheduling system for running cloud
data analytics in spot markets in which users may experience
periods of degraded performance. CAPRI dynamically predicts
the functional relationship between bid and performance, thus
helping with managing expectations and bid advice. We propose
a new spot market abstraction called the bribe scheduler which
delivers differentiated service levels based on bids. CAPRI uses
a prediction mechanism built on a queueing approximation of
the bribe scheduler. CAPRI dynamically estimates parameters to
adapt the queueing model and provide accurate performance
predictions in the face of time-varying workloads.

We collect measurements using CAPRI running two realistic
workloads, IMDB and TPCDS, and demonstrate the accuracy of
our approximation and parameter estimation methodology. We
show that CAPRI achieves a median prediction error below 3% in
bursty workloads. We find that CAPRI’s service level prediction is
pessimistic as users are likely to experience better performance
than they should receive for their bids.

I. INTRODUCTION

Data analytics applications are powered by a diverse array
of computing platforms from clusters to clouds, and more
recently, to spot markets [10], [17], [31]. While attractive
for offering inexpensive servers, spot markets often fail to
deliver predictable performance [4]. As spot prices fluctuate,
applications are exposed to interruptions which may result in
long delays, forcing the user to wait either for the price to drop
or to recover lost state [5], [22], [29]. Because such delays
are difficult to anticipate, users may feel discouraged and
abandon the spot market [19]. In this paper we present CAPRI,
a spot market scheduling system that adaptively determines the
functional relationship between bid and performance for data
analytics applications, thus enabling users to anticipate with
good accuracy their service levels on the spot market.

As depicted in Figure 1 Amazon EC2 offers spot resources
with interruption rates that are usually higher than 20% irre-
spective the instance type and availability zone. Two common
solutions for running data analytics on a spot market are
either to place large enough bids and reduce the risk of
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Fig. 1: A heat-map depicting high frequency of instance interruptions
across all instance types in each availability zone from the AWS spot
advisor in the trailing month.

preemptions [23], [33], or to periodically save the application
state to avoid losing work already done [22], [29]. Not only
these solutions are cost ineffective, but they also don’t provide
any performance expectation to users.

We seek to provide differentiated service levels to users
based on their bids by means of a new spot market abstraction
called the bribe scheduler. The concept of bribing for compute
resources has been previously studied in the context of a
single-server queue with users that buy their relative priority
by means of a bribe or bid to gain access to a server [15].
Whereas in this model users are granted exclusive access to
the server, in our cloud setting we aim at sharing resources
across multiple applications at the same time. Therefore, we
encapsulate the application runtime system on a set of spot
containers that are prioritized by the bribe scheduler based on
the user bids. To discriminate users based on their bids, the
bribe scheduler employs preemption so that only the containers
that have the highest bids are in service at any time. Unlike
existing cloud spot markets, our bribe scheduler re-queues
preempted containers instead of completely aborting them. A
queued container may be deployed again whenever resources
become available.

We want to be able to anticipate the relationship between
bid and performance for data analytics applications. To achieve
this goal, we design a spot advisor that is motivated by first
principles analysis within the context of a theoretical model



for studying bribe scheduling. To assess the performance of
a job in our analysis, we use the average job slowdown
defined as the ratio between the turn-around time of the
job and its uninterrupted runtime. We generalize the closed-
form formula of the job slowdown as a function of the bid
from a single-server system with rigid jobs to a multi-server
system with jobs consisting of multiple inter-dependent tasks.
To do so, we incorporate model parameters and we take an
adaptive approach for dynamically estimating those parameters
by employing an extended Kalman filter on the slowdown and
bid values measured over a period of time.

The main contributions of this paper are as follows:
1) We design CAPRI, a scheduling system for cloud data

analytics that achieves differentiated service levels and
dynamically estimates the functional relationship be-
tween bid and performance.

2) We deploy CAPRI on a public cloud and show that it
anticipates with high accuracy the job slowdown as a
function of bid and delivers better performance than
what users should expect for their bids.

II. SYSTEM MODEL

In this section we describe the scheduling system and its
model which provides differentiated service levels in a cloud
spot market based on bidding.

We consider data analytics applications running in a multi-
resource environment. Such applications are typically decom-
posed into multiple tasks that run on workers that are deployed
on units of the available capacity called compute slots. A
worker runs in a container and is responsible for the execution
of the tasks assigned to it by the task scheduler 1. Figure 2
depicts the scheduling of jobs in this environment. An incom-
ing job requests a given number of containers and is placed in
a queue where jobs are ordered based on their bid values, so
that lower bid values are in the back of the queue. Jobs wait in
the queue until they are allocated at least one container before
they start receiving service. While in service, the number of
allocated containers may grow and shrink depending on the
container availability and system load. A partially executing
job has only a fraction of requested containers allocated and is
progressing with degraded performance. When all containers
of a job are revoked, the job goes back to the waiting queue.

Let job arrivals constitute a Poisson process with rate λ and
let X be the random variable representing the job bid value.
Without loss of generality, we assume that the bid value is in
the set X = [0, 1]. The probability distribution function of X
is denoted by B(x) = Pr[X ≤ x], x ∈ X . We assume that
B(x) is continuous and differentiable. Let S(x) denote the job
slowdown defined as the ratio between the average response
time and the average service time. An approximate expression
for the job slowdown S(x) is given by [11]:

S(x;B,Θ) =
1

[1− θ0(1−B(x))θ1 ]
2 , (1)

1We use the terms worker and container interchangeably throughout the
paper.
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Fig. 2: An overview of our queueing system. Jobs and containers are
drawn as rectangles and circles within the rectangles, respectively.
The system has a certain container capacity, represented as squares.
A circle within a square represents a worker assigned to a container.

where Θ is a two-parameter vector, Θ = [θ0, θ1], acting as
scale and shape parameters, respectively, 0 ≤ θ0 < 1 and
θ1 > 0. First, θ0 acts as a (virtual) replacement for the server
utilization, which may not be available to an external observer.
Second, θ1 captures additional model features, when compared
to a simple M/M/1 bribe queue [15].

III. CAPRI SPOT MARKET

We want to provision transient spot resources to data ana-
lytics applications while providing performance expectations
to these applications. To achieve this, we assign to each
application a relative priority in the scheduler queue equal to
the bid value placed by the user at submission time. Our spot
market scheduling system called CAPRI consists of a bribe
scheduler that provides differentiated service levels based on
bids and a spot advisor that incorporates the relationship be-
tween the job slowdown and bid value described in Section II.
Figure 3 depicts at a high-level the functional components and
interfaces needed by CAPRI to operate in a real environment.

A. Job Management

We present the typical interaction between users and the
CAPRI spot market through the job management framework.
The data analytics job model assumed by CAPRI requires
configuring a specialized runtime system which consists of a
driver process that coordinates a set of workers used to execute
the job. The driver and worker processes run in isolation
inside containers which are allocated on compute and memory
resources as specified by the user.

The driver generates an abstract representation of the user
program that we call the logical plan of the job. In particular,
the driver decomposes the job into multiple tasks some of
which are independent and may run in parallel as they operate
on a different data partition of the same dataset (map tasks)
and others which may have data dependencies among them
(map tasks before reduce tasks). In this way, we obtain a
direct-acyclic graph of tasks (DAG) which is the logical plan
of the job. The driver has an internal DAG-aware scheduler
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Fig. 3: An overview of the functional components and interfaces
employed by CAPRI.

that further generates a physical plan of the job which is a
mapping of tasks to compute slots.

CAPRI enables users to compete for the available resources
through bidding. The bid is set upfront by the user and
represents the cost per compute slot that the user will pay
as long as its job is running excluding any waiting time that
the job may experience. Because the amount of spot resources
is limited, CAPRI may revoke a fraction of the resource quota
allocated to a given user if there are higher bidders in the
system. This is a key difference from existing spot markets
where the user is charged based on a spot price that is
completely under the control of the cloud provider.

B. Bribe Scheduler

To provide differentiated service levels to multiple users,
CAPRI defines a new abstraction of a cloud spot market called
the bribe scheduler. The bribe scheduler is a materialization
of the scheduling policy analyzed in Section II. The bribe
scheduler registers with a cluster-wide resource manager from
which it receives a spot offer – a list of free resources
on multiple (virtual) machines that CAPRI can use to serve
incoming user requests.

We employ two complementary mechanisms that target a
subset of the resource requests of existing spot users, and
operate at different timescales. On the arrival of a job, CAPRI
places the individual resource requests for containers in a
waiting queue which keeps these requests ordered by the user
bid with the driver always placed ahead of its workers so that
it is scheduled first. As long as there are idle spot resources,
CAPRI schedules the request at the head of the queue and
allocates an isolated bundle of its resource request. The job can
use this bundle to deploy either a driver if it doesn’t already
have a running one or a worker otherwise.

We ensure that no waiting request has a higher bid than any
other user request in service by means of preemption. When
the spot offer is fully utilized and an arriving request places
a higher bid than some of the user requests that are currently
serviced, CAPRI may preempt multiple requests with lower
bids in order to make room for the new request. Preempted

requests are placed back in the waiting queue where they will
wait for their turn as the higher bidders complete their work
and leave the system.

CAPRI seeks to guide its scheduling decisions only on the
user bid, and so it may not be able to service all resource
requests of a given job at the same time. Because the job model
assumed by CAPRI is elastic, it can run on as many resources
as it can get. The job cannot run without a driver and it will
immediately release all its workers when the driver is revoked.
However, a job may continue running even if (a subset of)
its workers are revoked by CAPRI. As a consequence, the
work already done and lost due to preemptions needs to be
rescheduled by the driver and restarted from scratch on the
remaining set of workers.

CAPRI may fully or partially preempt the resource requests
of a job multiple times until it completes. However, in order to
limit their costs, users can control the lifetime of their jobs by
setting a maximum number of driver restarts. When that limit
is reached, the user will abandon the spot market even though
its job is incomplete. In addition, users may guard their jobs
from failures through a periodic checkpointing mechanism that
can be incorporated into the runtime system of the job [29].
Deciding how and when to checkpoint their jobs based on the
volatility of the spot market is however orthogonal to the work
presented in this paper.

C. Spot Advisor

The key feature we propose is the spot advisor which is a
mechanism that allows users to get insights into their expected
level of performance on the spot market. CAPRI incorporates
the relationship between the job slowdown and bid value
which we have obtained in our analysis of the bribing queue
in Equation 1. In order to adapt the model parameters to
workload changes, CAPRI collects samples of the user bid,
job runtime, and response time. While the bid is determined
at submission time, the latter two samples are collected once
the job completes. Using these samples, CAPRI dynamically
estimates and updates the model parameters over time using
an extended Kalman filter as described in [11].

Independent of collecting samples and updating the model
parameters, CAPRI allows users to query the spot advisor. In
particular, CAPRI can answer two types of queries. When the
user provides a bid value, we can predict the average slowdown
by replacing in Equation 1 the fraction of previous users that
had a lower bid than the current user. Furthermore, we can
provide a bid advice to a user that sets an expectation for the
desired level of service. To so so, we employ Equation 1 from
which we can obtain the user bid as a function of the job
slowdown by simply inverting the function.

D. Resource Allocator

To operate the spot market, CAPRI assumes ownership over
a set of machines offered by a cluster-wide resource manager.
CAPRI uses those machines to confine the runtime systems
of the incoming jobs in isolated bundles of resources such as
containers. Such resource bundles are specified in terms of a
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Fig. 4: The distribution of bid values (a) and the cumulative distribution function of the job size (b) for both the IMDB and TPCDS workloads.

quota of compute slots and memory. In this section we present
the job isolation properties of CAPRI.

CAPRI provides performance isolation between different
jobs by leveraging container isolation mechanisms. Using
containers enables fine-grained resource-sharing, and so we
can confine the resource usage of a process tree to any amount
of compute slots and/or memory. Whereas other isolation
mechanisms exist, containers are attractive for CAPRI because
they simplify the deployment of a job runtime system. In
particular, the user only needs to set the instructions that CAPRI
can employ to generate a container image which is a portable
file that can be further used to instantiate containers.

CAPRI delegates the task of allocating resources at the
granularity of containers to a container management platform.
Besides creating and preempting containers, we also want
CAPRI to be able to monitor the status of its containers in
order to get accurate measurements of the job performance.
However, because providing isolation is platform dependent,
we make the resource allocation module pluggable. Therefore,
we maintain a low-level interface that enables CAPRI to
delegate the (de-)allocation and monitoring requests to the
underlying container management platform.

IV. EXPERIMENTAL SETUP

In this section, we present the configuration of our cloud
deployment and the data analytics workloads we use in our
evaluation of CAPRI. Our experimental setup consists of a
Kubernetes cluster with six Amazon EC2 t3.2xlarge vir-
tual machines each of which is configured with 8 vCPU slots,
32 GiB memory, and a network performance of up to 5 Gbps.

We use two workloads which consist of mixes of queries
from the IMDB [16] and TPCDS [20] benchmarks. The IMDB
benchmark includes 111 different queries with input data from
21 tables with a total size of 3.6 GB stored in CSV format.
Similarly, the TPCDS benchmark has 104 queries with input
data from 24 tables with a total size of 1 GB stored in Parquet
format. Each workload consists of a stream of 1,000 jobs with

a Poisson arrival process and an imposed average load of 0.9.
A job request consists of five containers with 1 vCPU and
1 GiB each and may be preempted at most four times before
abandonment. The bid values in both workloads are sampled
from a synthetic geometric distribution with p = 0.1 which is
dominated by relatively low bids with a median value of 0.3
as shown in Figure 4a.

Figure 4b depicts the job size distribution in the IMDB and
TPCDS workloads. On average, the jobs sizes in the TPCDS
workload are twice as large as in the IMDB workload. The
IMDB workload is dominated by short-interactive queries with
more than 40% of all jobs taking less than 5 minutes and very
few long-running jobs. In particular, roughly 20% of the jobs
in the IMDB workload account for almost 50% of the total
load. In contrast, the TPCDS workload is less variable than
IMDB, with more than half of the jobs having sizes between
20 and 140 minutes. Running the IMDB and TCPDS workloads
on CAPRI in our setup took 9.66 h and 15.91 h, respectively.

We implemented our CAPRI scheduling system using Spark
on Kubernetes. To run Spark on Kubernetes we employ a
job submission framework which bundles the Spark runtime
system inside Kubernetes containers [2]. The job submission
framework receives the user request for running an application
with a certain bid and number of containers. The framework
creates a Spark driver which in turn launches multiple workers
all of which run inside Kubernetes containers. The driver
and worker container scheduling are handled by our CAPRI
scheduling system which maintains a waiting queue ordered
by the container bid. In order to control the life-cycle of
containers, CAPRI uses the Kubernetes Java Client [1], which
provides access to the Kubernetes API for creating and delet-
ing bindings between containers and cluster resources.

We packaged the spot advisor in an external library that
dynamically tracks the model parameters as it learns of new
data collected when jobs complete, namely the total queueing
time and the wall-clock time during which the job receives
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Fig. 5: Scatter plots depicting the observed and predicted job slowdowns for the complete range of bids. Jobs may suffer large slowdowns if
they bid low less than 0.1, be lucky with relatively low slowdowns if their bids are between 0.1 and 0.25, or achieve on-demand performance
if their bids are higher than > 0.5.

service from the system. To integrate the spot advisor with our
scheduling system we expose a simple API that can be used
either for updating job samples or to get a slowdown prediction
given a bid value. Whereas the job submission framework is
specific to Spark applications, both the bribe scheduler and
the spot advisor are agnostic to the application type.

V. EXPERIMENTAL RESULTS

In this section we analyze different aspects of CAPRI’s
operation in the face of time-varying workloads such as the
prediction accuracy, cost savings, and preemption sensitivity.

A. Prediction Accuracy

We first evaluate CAPRI’s ability to deliver differentiated
service levels based on the submitted bids and to anticipate
the job slowdown attained given a bid.

Figure 5 compares the observed and predicted job slow-
downs for the complete range of bid values with both work-
loads. Jobs that bid higher than 0.5 experience close to ideal
slowdowns. As expected, jobs that bid below 0.25 are more
likely to experience large slowdowns because they face a
higher risk of preemption. However, we observe that the range
of slowdowns is much wider in IMDB than in TPCDS. The
IMDB workload is dominated by short-interactive jobs that
take in the order of minutes and so, jobs that experience
delays due to other jobs with higher bids typically have
slowdowns much higher than 2. In contrast, the job sizes in
the TPCDS workload are larger and more homogeneous, which
means their slowdowns are less sensitive to delays. Jobs with
relatively low bids may still be lucky and experience good
service levels during periods of lower utilization. This is the
case for the cluster of jobs in TPCDS that bid below 0.25
and experience slowdowns between 1 and 2. In contrast, such
lucky jobs are less frequent in IMDB because the system has
a higher utilization when running this workload.

Figure 6 shows the relationship between the predicted
and observed job slowdowns. We use the R-squared value,
also called coefficient of determination, to assess how close
CAPRI’s job slowdown prediction is to an ideal prediction.
The R-squared value ranges between 0 and 1 and provides
a good measure of how well the observed job slowdowns
are replicated by CAPRI’s prediction model. High R-squared
values that are close to 1 denote a strong correlation between
the observed and predicted values. An important observation
is that job slowdowns in IMDB are more predictable than in
TPCDS. The system load is more stable and less sensitive to job
preemptions in IMDB. These short jobs are hit by preemptions
relatively late in their execution and so, the amount of work
they waste and need to recompute compensates for the de-
crease in utilization caused by jobs that reach the preemption
threshold and get abandoned. In contrast, job preemptions in
TPCDS result in larger fractions of work that is abandoned,
thus decreasing more drastically the utilization of the system.

In Figure 7 we depict the distribution of the relative pre-
diction error delivered by CAPRI with each workload. CAPRI
anticipates the service levels of half of the jobs with less
than 3% prediction accuracy for both workloads. Moreover,
CAPRI’s prediction error is very dense in the range between
0 and 10% and very rarely exceeds 30%, which confirms
our model is accurate and robust. We also see that the
distribution of relative errors is more dense on the positive
side, which means that CAPRI tends to overestimate the job
slowdown. Thus, on average jobs may expect to experience
lower slowdowns than their anticipated levels of performance.

B. Cost Savings

To analyze the cost of using CAPRI we investigate the
evolution of the spot price over time. Unlike AWS spot
markets, CAPRI is a free market in which users are charged
based on their bids. Thus, in our experiments with CAPRI,
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Fig. 6: The correlation between the observed and predicted job slowdowns. CAPRI delivers good prediction accuracy of the job slowdown
as most jobs are very close to the regression line. The R-squared values are 0.91 and 0.82 for IMDB and TPCDS, respectively.
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Fig. 7: The density of the relative error in job slowdown prediction with CAPRI for each workload.

the spot market price is determined by the current system
load and the user bids, rather than a hidden process that
dynamically changes it periodically as in the case of AWS
spot markets [4]. As we see in Figure 8, the spot price on
CAPRI mostly fluctuates within the range between 0 and 0.3
and rarely increases above 0.3, which is the median bid value
in our workloads, even though we operate the market under
high system loads. When compared to the cost of the on-
demand uninterrupted execution, CAPRI achieves an 80% and
65% cost reduction for IMDB and TPCDS, respectively.

C. Sensitivity Analysis

In all our previous experiments we have set the maximum
number of restarts before a job is abandoned by CAPRI to 4. To
understand the impact of the preemption-restart mechanism,
we perform a sensitivity analysis of the number of retries a
job may attempt after preemptions. To this end, we run a set
of micro-experiments using 10% of all jobs in each workload.
We set the number of job restarts between 1 and 16. Any job
that is preempted more times than the predefined number of
job restarts is completely abandoned by CAPRI.

Figure 9 depicts the slowdown achieved by jobs at different
percentiles in the job slowdown distribution when the number
of job restarts increases from 1 to 16 for each workload. We
find that CAPRI is not overly sensitive to the number of restarts
a job may attempt. We can see that in both workloads only
10% of all jobs have slowdowns that are higher than 2.5.
More importantly, roughly 80% of all jobs experience close
to ideal slowdowns when the number of retries is less than 8.
Setting a lower number of retries per job increases the chance
of job abandonment. Without any retries like on AWS spot
markets, we have roughly 25% of all jobs that are completely
abandoned in both workloads. However, setting maximum 16
retries per job reduces the number of abandoned jobs in CAPRI
to only 4.

Allowing jobs to retry multiple times increases the amount
of work that is lost due to preemptions and needs to be
recomputed when jobs get restarted. Having extra work to
recompute because of the preempt-restart mechanism adds
more pressure on CAPRI which may lead to congestion and
starvation of jobs that bid relatively low. When we set the
number of retries to 4, the samples of the IMDB and TPCDS
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Fig. 8: The evolution of the spot price for the duration of each the workload.
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Fig. 9: The job slowdown distribution for different number of job restarts. AWS spot markets allow no job restarts.

workloads impose an average system utilization of 0.86 and
0.77, respectively. Because the system is almost never idle
for the duration of the experiments the likelihood of having
queueing delays is relatively high, hence the few jobs that have
slowdowns above 2.

VI. RELATED WORK

In this section we summarize the related work from three
aspects: auction mechanisms for resource allocation on the
spot market, bidding strategies for spot resources, and dynamic
parameter estimation techniques.

Auction Mechanisms. Running auctions to sell unused
cloud resources may improve system efficiency and/or the
provider revenue. To this end, efficient resource provisioning
policies have been extensively studied in prior work from
a theoretical perspective. In order to discriminate users ac-
cessing their services, cloud providers can employ two main
mechanisms: priority-based allocation and preemption based
on user bids [3], [15], [18]. Departing from the single-server
queues, other spot market designs have advocated for modeling
auctions with heterogeneous instances rather than the previous
type agnostic approaches [25]. The analysis of the online
auction problem in this setting resulted into a mechanism
that is optimal with respect to system efficiency across the

temporal domain and is also able to dynamically provision
heterogeneous resources.

Another practical approach to auctions that allows users to
bid for their resources and bundles heterogeneous machines
while taking into account operational costs of servers, has been
proposed to optimize the social welfare and the provider’s net
profit [32]. Cloud providers may also operate proportional allo-
cation schemes in which a user receives a fraction of resources
that is proportional to the bid. In this area, game theoretic
techniques have been used for service provisioning [6], price
anticipation [9], and the introduction of resource allocation
methods [21]. Merkat [8] is a resource manager that employs
weighted proportional allocation [21] to dynamically allocate
cloud resources among applications.

Bidding the spot market. Since Amazon EC2 released its
spot markets in 2009, a sizable body of research analyzed the
operation of such systems in the cloud. The characterization
and prediction of spot prices of the AWS spot markets [4]
inspired the design of user bidding strategies that optimize cost
while also achieving uninterrupted service. Such strategies can
be derived either by means of statistical analysis of historical
spot prices [14], [33] or through more advanced modelling
techniques such as Markov chains [7], [30]. However, recent



work has shown that complex bidding strategies [12], [26]
are often ineffective in practice because cloud providers allow
users to place maximum bids while charging them for a much
smaller price that constitutes the spot price [23].

Dynamic parameter estimation. Modeling and predicting
the performance of MapReduce-based applications has been
studied in various settings [13], [28]. Common approaches
build an estimator by choosing a relationship between an
output variable that needs to be predicted and several system
properties that can be measured and used for prediction. Most
of these solutions build the estimator with machine learning
techniques that use large amounts of training data based on
low-level application performance characteristics [24], [27].

VII. CONCLUSION

CAPRI is an alternative spot market to existing public clouds
for containerized data analtytics that employs bribe scheduling
to provide differentiated service levels to its users. CAPRI is
designed from first principles in the context of an analytic
performance model that estimates the functional relationship
between performance and bid. With a control theoretical
approach based on Kalman filtering, we dynamically tune this
model using runtime performance and bid measurements. We
incorporate our adaptive model in a spot advisor that CAPRI
employs either to set an expectation for the performance of a
job given a particular bid value or to suggest a minimum bid
value required to attain a given service level.

Our evaluation shows that CAPRI rapidly adapts the per-
formance model to workload changes and exhibits a strong
relationship between the predicted and measured job slow-
down performance. In particular, CAPRI achieves a median
prediction error below 3% which in most cases is pessimistic.
In CAPRI jobs are likely to experience better service levels
than what they should expect given their bids, which results
in an average cost reduction of 65% or higher. We also show
that CAPRI is rather insensitive to the number of job restarts
caused by preemptions.
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