
Reducing Job Slowdown Variability
for Data-Intensive Workloads

Bogdan Ghit,† and Dick Epema†§
†Delft University of Technology, the Netherlands

§Eindhoven University of Technology, the Netherlands
{b.i.ghit,d.h.j.epema}@tudelft.nl

Abstract—A well-known problem when executing data-

intensive workloads with such frameworks as MapReduce is

that small jobs with processing requirements counted in the

minutes may suffer from the presence of huge jobs requiring

hours or days of compute time, leading to a job slowdown

distribution that is very variable and that is uneven across jobs of

different sizes. Previous solutions to this problem for sequential or

rigid jobs in single-server and distributed-server systems include

priority-based FeedBack Queueing (F B Q), and Task Assignment

by Guessing Sizes (TA G S), which kills and restarts from scratch

on another server jobs that exceed the local time limit. In

this paper, we derive four scheduling policies that are rightful

descendants of existing size-based scheduling disciplines (among

which F B Q and TA G S) with appropriate adaptations to data-

intensive frameworks. The two main mechanisms employed by

these policies are partitioning the resources of the datacenter, and

isolating jobs with different size ranges. We evaluate these policies

by means of realistic simulations of representative MapReduce

workloads from Facebook and show that under the best of these

policies, the vast majority of short jobs in MapReduce workloads

experience close to ideal job slowdowns even under high system

loads (in the range of 0.7-0.9) while the slowdown of the very large

jobs is not prohibitive. We validate our simulations by means

of experiments on a real multicluster system, and we find that

the job slowdown performance results obtained with both match

remarkably well.

I . I N T R O D U C T I O N
The ever-growing amounts of data collected and processed

by clusters and datacenters cause large disproportions between
the sizes of large-scale data-analytics jobs and short interactive
queries executed in single systems. As is well known, in the
face of a skewed or even heavy-tailed job size distribution,
achieving fairness across jobs of different sizes is difficult as
small jobs may be stuck behind large ones. For sequential
jobs, this problem can be addressed in single-server systems
by feedback queuing [20] or processor sharing [7] and in
distributed-server systems by having each server process jobs
of sizes in a certain range [8], [11]. In some of the policies
in the latter case, when job sizes are not known apriori, jobs
are restarted from scratch elsewhere, thus wasting processing
capacity, when they exceed a local time limit. In contrast, data-
analytics jobs using such programming models as MapReduce,
Dryad, and Spark have much inherent parallelism, there is
no natural way of splitting up resources of a datacenter for
specific job size ranges, and jobs may be so large that wasting
resources spent on partial executions is not acceptable. In this
paper, we propose and simulate four scheduling policies which
are rightful descendants of existing size-based disciplines for
single-server and distributed-server systems with appropriate
adaptations to data-intensive frameworks.

Fig. 1: A scatter plot of the job slowdown versus the job size for
a heavy-tailed MapReduce workload from Facebook (the small
figure shows the CDF of the runtimes) with the F I F O scheduler
under a system load of 0.7 (the horizontal lines indicate the
median and the 95th percentile of the slowdown).

Fairness, in both single-server and distributed-server sys-
tems, and more recently in clusters and datacenters, can
be considered to be satisfied when jobs experience delays
that are proportional to their sizes, which in this paper is
defined as their total processing requirements. Traditionally, the
performance of scheduling disciplines with respect to fairness
has been measured using job slowdown as a metric. In fact,
two dimensions of this metric are relevent—policies designed
for highly variable workloads are considered to be fair to the
extent that the total distribution of the job slowdown has a
low variability, and that it is not biased for certain job size
ranges. Therefore, in this paper the targets are to reduce the
variability of the slowdown defined as the ratio of the 95th
percentile and the median of the job slowdown distribution
without significantly increasing the median slowdown, and to
even the job slowdowns across the whole range of job sizes.

As an example of the phenomenon we want to tackle, in
Figure 1 we show the slowdowns versus the sizes for the jobs
in a Facebook workload that is scheduled with the standard
MapReduce F I F O scheduler. Here, the median and the job
slowdown variability (as just defined) are 3 and 9, and clearly,
the small and medium-sized jobs experience the higher and
more variable job slowdowns. The inset of the figure shows
the CDF of job runtimes, and shows a difference of 3 orders of
magnitude between the smallest and the largest jobs. Further,
we find that less than 7% of the jobs in the Facebook workload
account for almost half of the total load.



The common denominator of policies for isolating the
performance of jobs of different sizes that have been studied in
the past is splitting the workload across multiple queues that
only serve jobs (or parts of jobs) with processing requirements
in certain ranges. Indeed, multi-level FeedBack Queueing
(F B Q) [20] is a priority-based single-server time-sharing policy
that relies on preemption of jobs without loss of work already
done. In contrast, the Task Assignment by Guessing Sizes
(TA G S) policy [11] is designed for distributed server systems,
where jobs get killed and are restarted from scratch when
being moved to the next queue when they exceed a time limit.
Similarly, when job sizes are known (or estimated) apriori,
jobs can be immediately dispatched to the appropriate queue
upon arrival as in Size-Interval Task Assignment (S I TA) [12].
Another interesting way to do the same without knowing job
sizes is done by the C O M P policy that compares the estimated
size of an arriving job to the sizes of some number of the last
previously departing jobs [18].

Data-intensive frameworks such as MapReduce have a job
model that is very flexible. Jobs consist of many tasks with loose
synchronisation points between successive stages (e.g., map
and reduce), which makes them malleable or elastic. The shared
distributed file system of MapReduce allows any task to run on
any processor in the datacenter. So the opportunity exists to run
multiple tasks of a single job in parallel and to run multiple jobs
simultaneously, as opposed to the rigid job model supported by
F B Q and TA G S in single and distributed servers. Therefore, we
have the option to partition the resources of a datacenter across
queues, mimicking the operation of distributed-server systems,
or to have all queues share the whole non-partitioned datacenter.
Moving jobs from one partition/queue to another may be done
without killing them by keeping the work previously completed
in the distributed file system.

With the mechanisms employed by our policies the vast
majority of short jobs in MapReduce workloads experience
close to ideal job slowdowns even under high system loads (in
the range of 0.7-0.9), at the expense of higher slowdowns for
a relatively small fraction of large jobs (less than 5%). Further,
our policies consistently improve the slowdown variability over
F I F O by a factor of 2.

The main contributions of this paper are:
1) We derive four multi-queue size-based policies for

data-intensive workloads with skewed, unknown job
sizes that isolate jobs of similar sizes either by
migrating them across different queues or partitions
without loss of previously completed work, or by
judiciously selecting the queue to join (Section IV).

2) With a set of real-world experiments, we show that our
simulations are remarkably accurate even at high per-
centiles of the job slowdown distribution (Section V).
With a comprehensive set of simulations, we analyse
and compare the effectiveness of our scheduling
policies in reducing the slowdown variability of heavy-
tailed MapReduce workloads (Section VI).

I I . M A P R E D U C E M O D E L
MapReduce [9] and its open-source implementation Hadoop

are widely used in clusters and datacenters for processing large,
regular datasets by exploiting the parallelism of the applications
involved. With this model, jobs that process very large datasets
(terabytes of data) can be easily executed on clusters.

Internally, MapReduce jobs are structured in multiple phases,

each of which having a homogeneous set of parallel tasks, and
so the number of tasks of jobs is proportional to the size of
their input data. A running MapReduce job goes through three
successive possibly overlapping phases: the map phase that runs
a user-defined function on each data block of the input data
set and generates key-value pairs, the shuffle phase that sorts
the output of the map phase and divides it among the reduce
tasks, and finally, the reduce phase that runs a user-defined
function to aggregate the intermediate data. The shuffle phase
may start transferring intermediate data to reduce tasks when
a predefined fraction of the map tasks have completed (by
default 0.05 in Hadoop). However, reduce tasks can only start
their actual processing after the entire map phase is finished.
This precendece constraint may pollute the job runtime with
significant delays between consecutive phases of MapReduce.

A MapReduce framework is implemented using a master-
worker model and requires the input dataset of jobs to be
distributed across a shared distributed filesystem. For instance,
the well-known high-throughput Hadoop Distributed File
System (H D F S) can easily be deployed on standard hardware
and is suitable for applications with very large data sets. The
data are stored in blocks of fixed size (e.g., 128 MB) that are
replicated in the H D F S for fault tolerance. The internal job
scheduler in MapReduce uses F I F O with five priority levels.
To assign tasks to an idle worker, jobs are selected in order of
their arrival time. Once a job is selected, the scheduler executes
either a map task with data closest to the worker, or the next
reduce task in line.

An interesting element of data-intensive frameworks is
the underlying shared filesystem, which enables fine-grained
resource sharing across different (sets of) jobs. In this way, users
may run their jobs across disjoint datasets, without replicating
their data across clusters. MapReduce jobs are flexible parallel
jobs that may be paused, their intermediate results saved in
the distributed filesystem, and later gracefully resumed without
losing previously completed work. Thus, the underlying shared
file system in our model enables a work-conserving approach
to preemption, which is an important assumptions in the design
of our scheduling policies.

I I I . J O B S L O W D O W N VA R I A B I L I T Y
In this paper we define the processing requirement or the

size of a job to be the sum of the its task runtimes. Clusters
and datacenters running frameworks for big-data applications
such as MapReduce, Dryad, and Spark are consistently facing
workloads with high job size variability, thus raising concerns
with respect to large and/or imbalanced delays across the
executed jobs [24], [29]. The tension between fast service and
fair performance has been an important design consideration
in many computer systems such as web servers and super-
computers [10], [22], which are known to execute workloads
containing jobs with processing requirements characterized by
heavy-tailed distributions.

Whereas users may tolerate long delays for jobs that process
large data sets, but most likely expect short delays for small
interactive queries, job slowdown, that is, the sojourn time
of a job in a system normalized by its runtime in an empty
system, is widely used for assessing system performance. The
question then is, what statistic of the job slowdown distribution
to use. In this paper, in order to characterise fair performance
in clusters and datacenters with data-intensive workloads, we
use a metric that we call the job slowdown variability. Let F be



��
�/�

�/�

-RE�DUULYDOV :DLWLQJ�4XHXHV

���&�

���&�

���&.

3URFHVVRUV

��

�.
�/.

��� ���

(a) F B Q and TA G S with feedback – unknown job sizes.

��
�/�

�/�

-RE�DUULYDOV :DLWLQJ�4XHXHV

���&�

���&�

���&.

3URFHVVRUV

��

�.
�/.

��� ���

(b) S I TA and C O M P without feedback – known job sizes.

Fig. 2: Two general queueing models for reducing job slowdown variability with a single partition or multiple partitions.

the cumulative distribution function of the job slowdown when
executing a certain workload in a system, and let F�1(q) be
the qth percentile of this distribution. Then the job slowdown
variability at the qth percentile, denoted by VF (q), is defined
as the ratio of the qth percentile of F and the median job
slowdown, that is:

VF (q) =
F�1(q)

F�1(50)
. (1)

Intuitively, the slowdown variability at a certain percentile
captures some subrange of the slowdowns of all jobs. In the
ideal case, VF (q) = 1 for all values of q between 0 and
100, meaning that all jobs have equal slowdowns. Then the
policy employed can be called strictly fair (for this workload),
although that notion has been previously defined when equality
of slowdowns holds in expectation [27]. Our target is to
minimize the job slowdown variability at different percentiles
q, in particular, at q = 95, while keeping the median job
slowdown low. In this paper we call VF (95) the (overall) job
slowdown variability of the workload.

To put fairness in large complex systems a bit in perspective,
in an M/G/1 system with load ⇢ < 1, the expected slowdown
for any job size under the processor-sharing (P S) discipline is
1/(1�⇢) [28]. Further, there is no policy that is both strictly fair
and has slowdown strictly less than 1/(1� ⇢) [27]. Obviously,
such strict fairness guarantees lead to performance inefficiency
when compared with the Shortest-Remaining-Processing-Time
(S R P T) discipline. Not only is S R P T response time-optimal,
but the improvement over P S with respect to the mean sojourn
time is at least a factor of 2 [4]. Interestingly, despite the
general concern of starving large jobs, the degree of unfairness
under S R P T is relatively small when the job sizes are drawn
from heavy-tailed distributions.

I V. S C H E D U L I N G P O L I C I E S
In order to reduce the job slowdown variability in data-

intensive frameworks with jobs that have highly variable
processing requirements, in this section we will present four
scheduling policies that are inspired by multi-level scheduling
with feedback in single-server systems and by size-based
scheduling in distributed-server systems.

A. Mechanisms and Queueing Models
The two mechanisms used by our policies are logical par-

titioning and/or system feedback. With the former mechanism,
we allocate the compute resources (processors or slots) across

disjoint partitions and we restrict for each such partition the
amount of service offered to jobs. With the latter mechanism,
we use job preemption in a work-conserving way by pausing a
running job, saving its completed work in the distributed file
system, and later gracefully resuming its execution from where
it left off. In Figure 2 we show the two queueing models for
that result. The main difference between the two models is
whether job sizes are unknown or known, possibly by means
of predictions. We propose four policies by combining the two
mechanisms in all possible ways.

All our policies have as a parameter some number K,K >
1, of waiting queues that serve jobs in F I F O order. Each queue
k = 1, 2, . . . ,K has an associated time limit Lk, which is set
to the total amount of service that jobs may receive while they
are in queue k; LK is set to 1. To satisfy our goal, it is crucial
that jobs of similar sizes reach the same queue, either through
feedback to lower queues (Figure 2a) or immediately upon
arrival (Figure 2b). In addition, each queue k may be associated
with a partition of size Ck of the total set of resources (hence
the dotted lines in the figures); if so, jobs from queue k are
restricted to using resources in the corresponding partition.

B. The FBQ Policy
Our version of FeedBack Queuing (F B Q) is an extension

of multi-level feedback scheduling for the M/G/1 queue [20] to
a data-intensive framework running in a datacenter or cluster.
It uses the queueing model of Figure 2(a) with feedback but
without resource partitioning.

An arriving job is appended to queue 1, where it is entitled
to an amount L1 of service. If its processing requirement does
not exceed L1, it will depart the system from queue 1, otherwise
it will be appended to queue 2, etc. When processors become
available because a task completes, the next tasks to run are
selected from the jobs waiting in the highest priority (lowest
index number) non-empty queue.

Our F B Q policy for data clusters enables multiplexing so
that multiple jobs at potentially different priorities may run
simultaneously. Even with Processor Sharing as the queueing
discipline in every queue, the latter is impossible with multi-
level feedback scheduling in a single-server queue.

C. The TAGS Policy
Our version of the TA G S (task assignment by guessing size)

policy is similar to our F B Q policy with the exception that now
each queue has its own resource partition where its jobs have
to run. As a consequence, whereas with F B Q jobs at different



priority levels may run simultaneously (when the jobs in the
highest non-empty queue cannot fill the complete system), with
TA G S, jobs of different sizes will indeed run simultaneously
in separate resource partitions.

Unlike its predecessor for distributed servers, our TA G S
policy for data clusters does not require killing jobs when they
are kicked out from one queue to another. Instead, jobs are
allowed to gracefully resume their execution without redoing
previously completed work. This is an essential design element
which eliminates concerns related to inefficiencies of TA G S
under higher loads.

D. The SITA Policy
Similarly to TA G S, S I TA does employ per-queue resource

partitions, but it does not use feedback. Unlike both F B Q and
TA G S, S I TA requires a way to predict the sizes of jobs upon
their arrival, based on which they are dispatched to the queue
of jobs of similar size. A job with predicted size between Lk

and Lk+1 is appended to queue k+1. Consequently, the queue
time limits have a different role as in the previous policies.
Whereas in F B Q and TA G S they are used to keep track of the
amount of processing consumed by a job, in the case of S I TA
they are used as cutoffs in the job size distribution for directly
dispatching them to the appropriate queue, where they run till
completion, even if the prediction is wrong.

Job sizes can be estimated by building job profiles by
running (a fraction of) their tasks and collecting samples of
the average task duration and the size of the intermediate data
they generate. This method has been adopted with good results
in previous work for MapReduce jobs when assumptions of
uniform task executions within different phases of a job can
be made [25]. In practice, we find that a much simpler way
of predicting jobs sizes based on their correlation with the job
input size is very effective (see Section V-C).

E. The COMP Policy
All previous policies require setting a number of parameters

that is proportional to the number of queues, which may be
prohibitive in a real system deployment. We will now present
a policy called C O M P which is an adaptation to MapReduce
of a policy that has been studied before [18]. Similar to F B Q,
C O M P does not use partitioning of the resources, and similar
to S I TA, C O M P does require job size predictions to send an
arriving job immediately to the appropriate queue where it
runs to completion. However, in contrast to both S I TA and
F B Q, C O M P does not use queue time limits. Upon the arrival
of a job, C O M P compares its estimated size to those of the
last K � 1 jobs that have been completed. If the new job is
estimated to be larger than exactly m of those jobs for some
m,m = 0, 1, . . . ,K � 1, it is appended to queue m+ 1.

F. Contrasting the Policies
Despite the common goal of reducing the job slowdown

variability, we observe in Table I the main differences between
our policies, which may divide the system capacity across
multiple partitions (e.g., TA G S and S I TA), may use preemption
and relegation to another queue (e.g., F B Q and TA G S), or may
use some form of prediction to anticipate job sizes (e.g., S I TA
and C O M P). Although our policies resemble the structure of
former scheduling disciplines for single-server and distributed-
server systems, there are three key elements in which their
correspondents for datacenters are different.

Policy Queues Partitions Feedback Job Size Param.
F I F O single no no unknown 0
F B Q multiple no yes unknown K

TA G S multiple yes yes unknown 2K � 1
S I TA multiple yes no predicted 2K � 1

C O M P multiple no no compared 1

TABLE I: Our policy framework for scheduling data-intensive
jobs in datacenters.

First, the original policies were designed for a single or
distributed-server model in which each host is a single multi-
processor machine that can only serve one job at a time. In
contrast, we target a datacenter environment in which the system
capacity may be divided across partitions with many resources.
As a result, instead of only having the time cutoffs as parameters,
in our model we also have the partition capacities as parameters.

Secondly, original TA G S and S I TA assume simple, rigid
(sequential or parallel) non-preemptible jobs that may only run
on a single host until completion. In contrast, our (MapRe-
duce) job model is more complex as there are intra-job data
precedence constraints (map before reduce) and data locality
preferences (of map tasks), and as jobs are elastic (or malleable)
and can run simultaneously, taking any resources they can get
when it is their turn.

Thirdly, original TA G S does not preserve the state of a job
when it moves it from one server to the next. Hence, long jobs
will get killed at every server except at the one where they run
to completion, at every step losing all the work performed and
thus wasting CPU time. Instead, we take a work-conserving
approach by allowing jobs that are being moved from one
partition to the next to retain their work and to gracefully
resume their executions without redoing previously completed
work. This way of operation is facilitated by the file system that
is shared across the whole framework, with the intermediate
results of tasks executed within any partition being persistent
and visible after a job has been moved to another partition.

V. S E T U P
We evaluate and compare our policies with the job slow-

down variability at different percentiles as the main metric
for representative MapReduce workloads. Given the large
space of policy configurations (e.g., the number of queues,
the partition sizes, and the queue time limits), in this paper we
take an experimental approach through realistic simulations of
MapReduce to completely understand the impact of our policies
on the slowdown variability in a MapReduce framework when
jobs have very different sizes.

A. Simulator
We have modified Apache’s open-source MapReduce simu-

lator Mumak [19] to include our scheduling policies. Although
many discrete-event simulators for traditional queueing models
exist, we chose Mumak [19] for its compatibility with the
popular open-source MapReduce implementation Hadoop.
Thus, Mumak reproduces closely the internals of Hadoop
by simulating with a discrete time scale the MapReduce
job scheduling and task allocation. Furthermore, Mumak can
employ without changes the standard Hadoop schedulers (e.g.,
F I F O, Capacity [2]).

A subtle point in simulating MapReduce is to appropriately
adjust the reduce task runtimes based on the shuffle phase
duration. Mumak schedules reduce tasks only when a predefined
fraction of map tasks have finished (the default value is 5%).



Applications Maps Reduces Job Size [s] SIM [s] DAS [s] Jobs
G R E P 2 1 63.14 36.10 43.26 26
S O R T 4 1 60.20 32.70 39.97 4
W C O U N T 4 1 126.14 42.04 49.73 4
G R E P 50 5 155.32 42.83 53.18 4
W C O U N T 100 10 3,790.46 86.80 93.62 3
S O R T 200 20 5,194.64 149.92 156.89 3
G R E P 400 40 15,697.18 233.63 239.21 3
W C O U N T 600 60 26,662.53 579.73 589.02 3

TABLE II: The characterisitics of the jobs used in the validation,
and the job runtime in the simulations (S I M) and in the real
deployment (D A S).

0

5

10

15

FBQ TAGS SITA COMP
Policy

Sl
ow
do
wn

System
SIM
DAS

(a) Median

FBQ TAGS SITA COMP
Policy

(b) 95th percentile

Fig. 3: The slowdown performance of our policies for the
workload summarized in Table II using both simulations (S I M)
and real-world experiments (D A S).

Although Mumak allows reduce tasks to occupy slots during
the map phase, their runtime duration is simulated from the
moment when all map tasks are finished. As reduce tasks
may still be in their shuffle phase even after all map tasks
have finished, Mumak conspicuously underestimates the job
completion time. To reproduce closely the shuffle phase of
the MapReduce job execution, we changed the simulator and
incorporated the remaining duration of the shuffle phase in the
reduce task runtimes.

Mumak is not completely event-based but has time-based
elements, as the hearbeats through which tasks are assigned
to idle slots in the framework are simulated periodically at
fixed intervals. Although useful in practice to implement
the interaction between the components of the MapReduce
framework (e.g., JobTracker and TaskTrackers), this artifact
pollutes the simulation results by leaving slots idle between
two consecutive heartbeats, thus reducing the utilization of the
framework. Therefore, we changed the simulator and removed
the periodic hearbeat by forcing slots to initiate a hearbeat
whenever they become idle.

In all our simulations (except the validation experiments
in Section V-B), we use a cluster consisting of 100 nodes
on which one MapReduce framework is installed, and we
configure each node with 6 map slots and 2 reduce slots. This
size of our MapReduce framework is comparable to production
deployments of MapReduce frameworks [3], [29]. For each
simulation, we report the averages of our performance metrics
over three repetitions.

B. Validation

With a set of both simulations and real-world experiments,
we assess the accuracy and the robustness of our modified
simulator. We run real-world experiments on the Dutch six-
cluster wide-area computer system D A S - 4 [1]. The TU Delft
cluster, which we use for this validation, has 24 dual-quad-core
compute nodes, with 24 GiB memory per node and 50 TB total
storage, connected within the cluster through 1 Gbit/s Ethernet

(GbE) and 20 Gbit/s QDR InfiniBand (IB) networks. In our
real-world experiments, we use our prototype of Hadoop-1.0.0,
which includes the implementations of the four policies. For
both our simulations and real-world deployment, we configure
10 nodes with 6 map slots and 2 reduce slots.

To evaluate how accurately our simulator approximates real-
world executions of single MapReduce jobs, we compare the
simulated runtimes with the job runtimes in the real system for
8 different job types. As we show in Table II, these jobs are
instances of three well-known MapReduce benchmarks (Grep,
Sort, and Wordcount) with very different numbers of tasks
(between 3 and 660) and variable total processing requirements
(between 1 minute and 7.4 hours). Our simulator estimates in
most cases the job run times with less than 10% error (which
is comparable to the error in SimMR [26] developed at HP
Labs). In fact, the difference between the job runtimes in our
simulator and in the real-world system is always at most 7-10 s
(columns 5 and 6 in Table II). This difference represents the
overhead of setting up and cleaning up a MapReduce job in
Hadoop, which we do not account for in simulation.

To assess the robustness of our simulator with complete
MapReduce workloads, we compare the slowdown performance
of our policies in simulation and real-world deployment. The
workload we use in this evaluation has 50 jobs in total and
consists of different fractions of job types, as indicated in
Table II. We simulate and execute the workload in our cluster
using each of the four policies with K = 2 queues. We set
the size of partition 1 to 30% for both TA G S and S I TA. The
time limits we find to be the best for TA G S, S I TA, and F B Q
are 120, 160, and 160 seconds. Figure 3 shows the slowdown
performance of our policies in both the simulator and the real-
world deployment when job arrivals are Poisson and the system
load imposed is 0.7. Our simulator is remarkably accurate
and delivers slowdown performance that is consistent with
the real-world experiments. The relative error between the
simulations and the real-world experiments is less than 1% for
both the median job slowdown and the job slowdown at the
95th percentile.

C. Workloads
The workloads we impose on the system in our simulations

are based on a MapReduce trace from Facebook that spans
6 months, from May 2009 to October 2009, and contains
roughly 1 million jobs. This trace is public and contains the
size in bytes for every job for each MapReduce job phase. We
employ the S W I M benchmark [6] which uses the records in
the trace to generate synthetic jobs. We create and execute
a set of 1121 such synthetic jobs on a real 20-node Hadoop
cluster and record for each job all relevant information (e.g.,
task runtimes) so that it can be executed in our simulator.
We generate different workloads of 1121 jobs by randomly
selecting jobs without repetition from this set of synthetic jobs.
The job interarrival time has an exponential distribution. In
order to compute the slowdowns experienced by the jobs in our
simulations, we determine the reference runtime of each job
in an empty 100-node simulated MapReduce framework from
when its first task starts until its last task terminates. The sum
of the reference runtimes of all jobs accounts for approximately
60 h of simulated time. In Figure 4a, we show the distribution
of these reference job runtimes of the jobs in our workloads,
which is very variable, as its squared coefficient of variation is
equal to 16.35. As reported for other data-intensive workloads



0

100

200

300

400

101 102 103 104

Runtime [s]

D
en

si
ty

(a) The density of the reference job runtimes
(horizontal axis in log scale).

●●●●●●●

●

●●●

●

●●●●●
●
●

●●

●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●●

●

●

●

●

●
●●

●
●●●

●
●●●

●

●

●●●

●

● ●

●

●

●

●

●

●●●●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●
●
●●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●●●●
●

●

●●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●●
●

●
●●●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

● ●●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●
●

●

●●

●

●

●

●

●●●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●●

●

●
●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

0

1

2

3

4

5

0 500 1000 1500

Map Tasks

Jo
b 

Si
ze

 [h
]

(b) The job size versus the job input size.

0

50

100

150

100 101 102 103

Number of tasks

D
en

si
ty

(c) The density of the number of tasks per job
(horizontal axis in log scale).

Fig. 4: Properties of the workload generated with S W I M measured in a simulated empty 100-node system: a histogram of the
reference job runtimes (a), the correlation between the input size and the processing requirement of jobs (b), and a histogram of
the number of tasks per job (c).

at Facebook, Google, Cloudera, Yahoo! [5], the distribution
of the job sizes is skewed, with fewer than 8% of the jobs
in our workloads responsible for almost half of the total load.
In contrast with the reference runtimes, the job sizes (total
processing requirement) are less variable, with the squared
coefficient of variation equal to 3.32. Further, we find in our
workloads a strong correlation between the total job input size
and the total processing requirement (the size) of the job (see
Figure 4b), which is used by S I TA and C O M P to assign arriving
jobs to queues. Finally, jobs in our workload may achieve very
different levels of parallelism: from less than ten tasks to more
than 10,000 tasks (Figure 4c).

V I . E VA L U AT I O N
In this section we first investigate the impact of the key

parameters on the slowdown variability (Section VI-A). Further,
we analyse the effect of load unbalancing across partitions
on the performance of TA G S and S I TA (Section VI-B), the
performance under heavy traffic (Section VI-C), and the degree
of unfairness in our scheduling policies (Section VI-D). Finally,
we analyze the performance of F B Q and C O M P with more
than two queues (Section VI-E).

A. Parameter Sensitivity
All our policies assume a single MapReduce framework

with some number K of queues. Although having multiple
partitions may reduce the job slowdown variability by starting
short jobs faster rather than having them wait behind relatively
large jobs, in practice, configuring many partitions and setting
the corresponding time limits may be difficult—when set incor-
rectly, system fragmentation and poor utilization of partitions
may result. Fortunately, as we show in our analysis, having only
two queues (and partitions) already significantly reduces the job
slowdown variability and is sufficient to reach our goal. Thus,
in our simulations we set for all policies K = 2. In this case,
for F B Q, only one parameter has to be set, which is the time
limit of queue 1. In contrast with the previous implementations
in single-server and distributed-server systems, our TA G S and
S I TA policies require an additional parameter to be set for
each queue, which is the partition capacity—in our case only
the capacity of partition 1. We don’t have to consider C O M P
here as it operates without partitioning and without time limits.
We seek the optimal values of the parameters (capacity and/or
queue time limit of partition 1) for which our policies achieve
the lowest job slowdown variability.

●
●

●
●

●

0

10

20

30

40

10 20 30 40 50
Capacity of partition 1 [%]

(L
im

it 
of

 q
ue

ue
 1

) 
 x

 1
00

0 
[s

] Policy
● TAGS

SITA

Fig. 5: The optimal time limit of partition 1 for each capacity
between 10-50% at a system load of 0.7.

● ● ● ● ● ●

0.0

2.5

5.0

7.5

10.0

0 10 20 30 40 50
Capacity of partition 1 [%]

●
Median
slowdown

Slowdown
variability

(a) TA G S, ⇢ = 0.7

●
● ● ● ● ●

0.0

2.5

5.0

7.5

10.0

0 10 20 30 40 50
Capacity of partition 1 [%]

●
Median
slowdown

Slowdown
variability

(b) S I TA, ⇢ = 0.7

Fig. 6: The median job slowdown and the job slowdown
variability versus the capacity of partition 1 under a system
load of 0.7 (capacity 0% corresponds to F I F O).

We will first investigate the relation between the partition
size and the queue time limit for TA G S and S I TA. To this end,
we show in Figure 5 the optimal time limit of partition 1 for
a range of sizes of partition 1. Obviously, S I TA has a higher
time limit of partition 1 than TA G S, as jobs with S I TA run to
completion. Therefore, we expect TA G S to operate well even
at high capacities of partition 1, but we want S I TA to utilise a
smaller partition 1.

In Figure 6 we show how TA G S and S I TA actually perform
in terms of the job slowdown when the capacity allocated to the
first partition varies between 0-50% and the queue time limit for
each size of partition 1 is set to the optimal value as indicated
by Figure 5. As a hint to reading this and later similar figures,
the values at 0% capacity of partition 1 should be interpreted
as having a 95th percentile of the job slowdown distribution



● ● ●
●

●

●

0.0

2.5

5.0

7.5

10.0

10 12 14 16 18 20
(Limit of queue 1) x 1000 [s]

●
Median
Slowdown

Slowdown
Variability

(a) TA G S, ⇢ = 0.7

● ● ● ●

●

●

0.0

2.5

5.0

7.5

10.0

14 16 18 20 22 24
(Limit of queue 1) x 1000 [s]

●
Median
Slowdown

Slowdown
Variability

(b) S I TA, ⇢ = 0.7

Fig. 7: The median job slowdown and the job slowdown
variability versus the time limit in queue 1 at a system load
of 0.7 (the horizontal axes have different scales). The size of
partition 1 is set to 50% (TA G S) and 30% (S I TA).

● ● ● ● ● ●
0

5

10

15

20

4 8 12 16 20 24
(Limit of queue 1) x 1000 [s]

●
Median
Slowdown

Slowdown
Variability

(a) F B Q, ⇢ = 0.7

● ● ● ●
● ●

0

5

10

15

20

4 8 12 16 20 24
(Limit of queue 1) x 1000 [s]

●
Median
Slowdown

Slowdown
Variability

(b) F B Q, ⇢ = 0.9

Fig. 8: The median job slowdown and the job slowdown
variability versus the time limit in queue 1 at a system load of
0.7 and 0.9.

of about 23.8 (2.8 x 8.5). We observe that the impact of the
partition size is relatively small with TA G S over a wide range
of sizes—a capacity of partition 1 ranging from 20% to 50% is
fine. In contrast, with S I TA, setting the partition sizes is much
more critical; the job slowdown is significantly better when the
capacity of partition 1 is 20% or 30%, depending on whether
the median or the job slowdown variability is considered more
important. Outside that range, the job slowdown variability is
much higher.

Finally for the TA G S and S I TA policies, we investigate
the setting of the time limit of queue 1 having the capacity of
partition 1 set to 50% and 30%, respectively. Figure 7 depicts
the slowdown statistics for large ranges of queue time limits.
TA G S has relatively low median and high variability at low
queue time limits, and the other way around at high limits.
S I TA is relatively stable in the range of 14-20 x 1000 seconds,
but for higher values of the time limit, the median value gets
very poor. The time limits we consider to be the best for TA G S
and S I TA are 14,000 and 18,000 seconds, respectively (as
already indicated in Figure 5 for the partition sizes considered
here). Interestingly, the fraction of work that gets completed in
partition 1 is 35% for both policies with these optimal cutoffs.

Further, we investigate the setting of the time limit of queue
1 for the F B Q policy. The slowdown statistics in Figure 8 show
two important things. First, we see from Figure 8a that under
a system load of 0.7, F B Q is very insensitive to the queue
time limit, in contrast to both TA G S and S I TA. However, in
Figure 8b we show that going to 0.9 system load, F B Q becomes
more sensitive. We analyse in more detail the performance of all
policies under heavy traffic in Section VI-C. Secondly, Figure 8
shows that F B Q is by far the best performing policy with respect
to both the median slowdown and the slowdown variability

●

● ● ●
●

0.00

0.25

0.50

0.75

1.00

10 20 30 40 50
Capacity of partition 1 [%]

U
til

iz
at

io
n

● Partition 1 Partition 2

(a) TA G S, ⇢ = 0.7

●
●

●

● ●

0.00

0.25

0.50

0.75

1.00

10 20 30 40 50
Capacity of partition 1 [%]

U
til

iz
at

io
n

● Partition 1 Partition 2

(b) S I TA, ⇢ = 0.7

Fig. 9: The utilizations of partition 1 and 2 versus the capacity
of partition 1 at a system load of 0.7.

across the whole range of queue time limits considered. The
time limit we consider to be the best for F B Q is 12,000 seconds.

B. Load Unbalancing
In previous studies of the TA G S and S I TA policies for

distributed server systems, it has been shown that choosing
the queue time limits (or cutoffs) to balance the expected load
across partitions can lead to suboptimal median slowdown [8],
[11]. Counterintuitively, load unbalancing optimizes fairness
when the workload has a heavy-tailed distribution. The intuition
behind this strategy is that a large majority of the jobs get to
run at a reduced load, thus reducing the median slowdown.

We investigate now whether load unbalancing has the
same effect in our MapReduce use case. Figure 9 shows the
utilizations of partitions 1 and 2 for different capacities of
partition 1 with the corresponding optimal queue time limits
as we have determined in Section VI-A. Indeed, we observe
for TA G S and S I TA that for any capacity of partition 1 in the
range 10-50%, partition 1 is assigned significantly less load
than partition 2.

Nevertheless, it seems that when we try to achieve both low
median job slowdown and low job slowdown variability, only
S I TA is comparable to F B Q, while TA G S seems to be hitting
a wall. The former two policies have very close slowdown
variability when they operate at their optimal time limits –
18,000 seconds for S I TA (see Figure 7b) and 12,000 seconds
for F B Q (see Figure 8a). In contrast, in Figure 9 we show
that TA G S has a very high utilisation in partition 2 at the
optimal partition size of 50% and the optimal time limit of
14,000 seconds. This can be explained by what is the major
difference between TA G S and S I TA. Whereas S I TA runs each
job till completion in its “own” partition (wrong job size
predictions can be made), TA G S moves jobs across multiple
partitions through preemption until they reach the proper queues
where they can complete. So S I TA provides better isolation for
short jobs than TA G S does. As a consequence, with TA G S the
slowdowns of short jobs may be significantly higher than with
S I TA, as very large jobs with high levels of parallelism may
monopolize the entire partition 1, no matter what its capacity
is set to. Thus, TA G S with its optimal time limit of 14,000 s
may achieve a lower job slowdown variability than S I TA with
its optimal time limit of 18,000 s, but it does so at the expense
of a significantly higher median job slowdown.

C. Heavy-Traffic Performance
One major criticism of the TA G S and S I TA policies in

distributed server systems has been the strong dependence
of their performance on the system load [11], [22]. As the
load increases, unbalancing the load across the two servers



● ●

●
●

●●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●●
●

●
●

●
●● ●● ●● ●

●
●● ●● ●●●

●

●

●

● ●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●
●

●

●

● ●

●

●

●
● ●

●
●

●

●

●

●

● ●
●● ●

●
●

●
● ●

● ●●● ●●

●

●

●

●● ●●

●

●
●

● ●

●

● ●

●

●●

●

●

●
●

●
●

●

● ●
●

● ●
●

●

●

●
●

●
●

●
●

●● ●

●

● ●●
●

● ● ●
●

●

●

●
●

●
●

●● ● ●
● ●

●

●

●
●

●

●

●

●
●

● ● ●
●

●●
●

● ●
●

●● ● ●●

●

● ●●● ● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●● ●● ●
● ●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

● ●

●

●
●● ●

●● ●

●

●

●
●

● ●

●

●
●

● ●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●●
● ●●

●

●
● ●●

●
● ●●

●
●

●

●● ●

●
●●

● ● ●●

●
●

●

●●

●

●

● ● ●

●

●
●

●
●

●

●

● ●● ●●●● ●
● ●

●● ●

●
●

●●

●

● ●● ● ●●●
●

●● ●● ●●
● ●● ●

●
●

●
●●● ● ●●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●
●

●●
●

●● ●
●● ●

●

●

●● ● ●
● ●●●

●
● ●

●● ●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●
●

●

●●
●●

● ●
●

●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●
●

●
●

●

●

●

● ●●

●
● ●

●

●

●

●
●● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●● ● ●

●

●
●●

●

●
●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

● ● ● ●

●

●● ●●●

●

●

●

●
●

●

●● ●
●

●
●

●

●

●●●

●

● ●●

● ●
●

●

●
●

●
●●

●
●

●
●

●

●
●

●●

●

● ●●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ●● ● ●●
●

●

●

●

●

● ●

●

●

● ●

●

● ●●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●
●

●
●● ●

●
●● ●

●
● ● ●● ●●

● ●● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ●
●●

●
●● ●

●
●

●

●

●
●

●
●

●

●

●
● ●

● ●●
●●●●

● ●●
●

●
●●

●
●

●
●

●●
●

●●

●●

●
●

●●
●

● ●●

●

●● ●

●

● ● ●
●

●

●

●

●● ●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●
●

●
●

●

●

●
●●

● ●

● ●

●

● ●
● ●

●

●
●

● ●●● ●●●● ●●

●
●

●

●

● ● ●●
● ●

●●
● ●

●

●
●

●●
●● ●

●

● ●

●

●●

●

● ●●●
●
●● ● ●

●● ● ●
●●

●

●●

●

●

●

●●

●
●

●●● ●

●● ●

●

● ●●

●

●

●● ●●

●

●

●
●●

●

●
●

● ● ●●●0

20

40

60

101 102 103 104 105

Job Size [s]

Sl
ow

do
w

n

(a) TA G S

● ●● ●●
●

●
●

●●● ●● ● ●
●

●
●

●●

●
●

●●● ● ●
●

●

●

●
●

●

●

●

●● ● ●●● ●

● ●
●

●
● ●

●●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●●
●

●● ● ●
●

●

●
●●

●
●

●
●

● ●●
● ●

●

●●

●

●
●

● ●● ●●

●

●●● ●
●

●●●
●

●
●

●●

●
● ●

●
●

●
●

●●●

●

●●
●

●

●

● ●
●

●

●

●

●

●● ● ●●● ● ●●

●

●

●●
●

●●

●

● ● ●

●

●

●

● ●●

●

●●●● ●
●

●

●
●●

●

●

●
●●

● ●
●

●●● ●● ●
●

●
●

●

●●● ●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●● ●

●
● ●

●
●

●

●

●● ●
● ●● ●●● ●●

●

●
● ●

●

●
● ●

●

●

● ●● ●●● ● ●
●

●●●

●

● ●● ●● ●
●

●

● ●
●

●●

●

●

● ●

●

● ●●● ●
●

●

●● ●●● ●

● ●
●

●

●●

●

●

●●● ●
●● ●●●

●

● ●
●

●●● ●● ●
● ●

●

●

●
●

●● ● ●

●

●

●●● ●●●

●● ●

●

● ●●

●
●

●
●●

●
●

●

● ● ●
● ●

●

●● ●
●●●

●

● ● ●

●
●

●

●

●
● ● ●

●

●
●

●
●
● ● ●

●
●●●● ●
●

●

● ●

● ● ●

●

●

●
●

●

●●
●

● ●●

●
●● ●● ●● ●

●●
●●

●

●

●
●

●

● ●

●

●●
●

●
●

●

●

●

●●
● ● ●

●

●
●

●
●

●

●
●

●
●

●
●● ●

●
● ● ●

●

●

●●●
●

●
●●●

●

●●
●

●●● ●

●
●

●● ●
● ●●

●

●

●

● ●

●
●

●

●●
●

●

● ●● ●●

●

●
●

●

●

●● ● ●● ●

●

●● ●● ●●● ● ●
●● ●

●
●

●●●●
●●●●

●

●

●●● ●
●

●
●
●

●

●
●

●● ●

●

●●● ●
●

●

●
●● ●● ●

●●●

●

●

●
● ●● ● ● ●

● ●●
●

●

●

●

● ●● ●● ● ●

●

●

●

●

●
●

●

●

●●●● ● ●

●

●●

●

● ●● ●

●

●

●

●●

● ●

●●

● ●

●

●
●

●

●

●● ●●●● ● ●
●

●●

●

●
●

●

● ●

●

●

● ●●
●●

●● ●
●

● ●●●●

●

●

●

● ●● ●

●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

● ●●●● ● ●
● ●

●●

●

●

● ●●
●●

●●●

●

●● ●
●

● ●
●

●

●

●
●

●

●

●

●

●●

● ●
●

●

●

●

●

● ● ● ●●

● ●

●

●

●

●
●

● ● ●

●

●

●
●● ●

●

●● ● ●● ●

●
●● ● ●●

●

●

●

●●●

●

●

●

●
● ●

●
●

●●

●

●

● ● ●● ●
●● ●●

●

● ●●

●

●●

●
●

●

●● ● ●

●

● ●
●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●●
●

●

●
●

● ●
● ●

●

● ●
●● ● ●

●
● ● ●

●
●

●

●

●
● ●●

●

● ●

●
●● ● ●

●●● ●● ●

●
●

●
●

● ●●●

●

● ●
●

● ●

●

●

●●

●

●●●● ● ●

●

●

●

●

●

●

●

●
●

●
●● ●● ●

●

● ●

●

●● ●

●
●

●

●

●

●

●

●● ●●
●● ● ●● ●●●● ● ●● ● ●

●●

● ●● ●●● ●●

●

●●

●

● ● ●

●

● ●●
●●

●

● ●
●

●

●●
●

●● ●
●●

● ●
●●

●

●●●
●

●

●

●

●

●
●● ●

●

●

●

●

●

●●
●

●

●

● ●●● ● ●●●●

●

● ● ●
● ●

● ●
●●

● ●

●
●

●●● ●● ●●

●

●
●

●

●

●

● ●●●● ●●

●

●

●
●●● ●

●●

●

●

●● ●

●
●

●●●●● ●
●

●

●

●●
●

●

● ● ●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●●●0

20

40

60

101 102 103 104 105

Job Size [s]

Sl
ow

do
w

n

(b) S I TA

●
●

● ●●● ●● ●
●

●
● ●● ●●

●
● ● ●● ●●●● ●

●

● ●
●●● ●● ● ●●● ● ●

●

●●
●

● ●●● ●●● ●
●

● ●
●

●

●

● ●

●
●●

●● ●
●

● ● ● ● ●
●● ●● ●●●●

●
●

●
● ●

● ●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●
●●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

● ●

●

● ●
●

●

●

●

●

●

●

●

●● ● ●

● ●●

● ●
● ● ●

●
●● ● ● ●

●
● ●

● ●●
●

● ●
●● ●●●●

●
●● ●● ● ●●● ● ●●

●
● ●

●
● ●

●
●

●
●

●

●

●●
● ●

●●

●
●

●
● ● ●●

●

● ● ●● ●● ● ●● ●
● ● ●

●●● ●● ●● ●

●

●

●● ●
●

●● ●●

●

●● ●●
●● ●●

●
●● ●

●

●●●

●

●

●

●

●● ● ●●● ●●
●

●

●

●

●
●

●●● ●●● ●
●

● ●●●●●●● ●●●
●

● ●●●●● ●
●

●

●

●
●

● ● ●●● ●●● ●● ●●●● ● ●●
● ●

●● ●

●
●

●

●
●●●

● ●
●● ● ●● ●● ●● ●●

●

● ●●
●● ●

●
●

● ● ●● ● ●●● ●● ● ●● ●●●● ●● ● ●●● ●● ● ● ●
●

●●● ●
●
●●●● ●●●

● ● ●● ● ● ●●● ● ●●●● ●● ● ●● ●● ●● ●●●● ●●●● ●●● ● ●●●
●

●

●

●

●

●●

●●

●
●
●● ●●● ●

●
●●● ●●

●
●

● ●● ●●
●

●●● ●

●

●●●
● ●

●

●

●
●

●

●●
● ● ●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

● ●●

●

●

●

●
●

●
●

●●●
●

●

●
● ●

●●

●
●●

●

●

● ●●●●
●●

●
●

●

●

●

●

● ●
●

●

●

● ● ●● ●

●

●

●
●

●
●

●
● ●

●

●
● ●●

●
● ●

●
●

●
●

●

●

●●●

●

● ● ●●● ●
●

●● ●●

●

●

●

●

●

●

●●●
●

●

●

●●
●

●●

●

● ● ● ●●

●

●●●
● ●

●

● ●

●

●
●

●
●

●
●●

●
●

●

●

●

●●●
● ●

●

●
●

●

● ●

●

●

●●
●● ● ●●● ● ●●●

●

●

●

● ●

●

●

●

● ●
●

● ●

●

●

●

●

●

●●●

●

●●
●

● ●
●●●

● ●
●

●
●●

● ● ●● ●●● ● ●● ●●● ● ● ●●● ● ●●●●● ●● ●●

● ● ●
● ●

●

●

●
●

●●
●

● ●●
●

●
● ● ●● ●●● ●

●

●● ● ●
●

●

●●
●● ●● ●●●

●
●●●

● ●●

●

●

●
●

● ●● ●●
●

●
●●●● ●●●

●

●

● ●● ●●● ●● ●●

●
●

●● ● ●●

●

● ●●

●●
●

●
●

● ●

●

●
●

●

●● ●● ●● ●
● ● ●

●

●

●

● ●

●●

●

● ●● ●●

●

● ●
●

●● ●●● ● ●● ●●● ●● ● ● ●● ● ●
●●

●

● ●● ●
●

●

●
●

● ● ●●● ●● ●

●

●● ● ●● ●
●

● ● ●●● ●● ●●

●

●●●● ●

●

●

●

●●● ●

●●
●

●
●●● ●●● ● ●●

●

● ●

●

●

●●●● ●●

●

●
●●
●●

●

● ● ● ●
●

● ●●
● ● ●

●

●
●

●

●
●

●
●● ●●●

●

● ●

●
●●

●● ●●●●
●

● ● ●●● ● ● ●
● ●●●

● ●

●

● ● ●● ●● ● ●
● ●

●
●

●● ●● ●●● ●● ●● ● ●●● ● ●●● ● ● ● ●● ●●●● ●● ●●● ● ● ● ●● ●

●●
● ● ● ● ●● ●●

●●
●● ●●●● ●

●

● ● ● ●●
●

●●
●● ●● ● ●●●0

20

40

60

101 102 103 104 105

Job Size [s]

Sl
ow

do
w

n

(c) F B Q

●
●

● ●●●●● ●●● ●

●
●● ●● ● ●●

●

●

●
● ●●

● ●●● ● ●●● ● ● ●●● ● ●● ●●
●

● ●● ●●● ●●● ●● ●

●

●●●● ●●● ● ●● ● ● ●

●

●

●

●

●

●

●

●● ●
●

● ● ●●
●
●

●
●

● ●

●●

●

●

●●● ●●

●

●● ●●

●

●

● ●
● ●

●●●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

● ●

●

● ●●

●

●

●
●

●

●

●●●●
● ●

● ●

●●

●

●● ●● ●● ●
●

● ●● ●● ●● ●●● ● ● ●
●

●● ●
●

●
●

●

●●

● ●●

● ●

●

●
● ● ● ●●● ● ●●● ●●●

● ●
●

●●● ●● ●

●

●

●

●

●

●●

●

●

●

●

●●● ●●
●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●●

● ●
●

●
●●● ● ●● ● ●● ●● ●● ● ● ●●●●

●
●● ● ●● ●

●

●● ●●●● ●● ●● ●●●
●

● ●●● ●● ●● ●●●● ●● ●● ●●
●

● ●● ● ●●●●

●●

●
●

● ●

●

● ●● ●●
● ●● ●● ● ●● ●●● ●● ●● ● ●● ●● ● ●● ●●●● ●● ● ● ● ●●

●
● ● ●●● ●● ●

●
●● ●●● ●●● ● ●●● ● ●●● ● ●●●● ●● ● ●● ●● ●●● ●●● ●●●● ●● ●● ●● ●● ● ●● ●

●

●
● ● ●

●
●

●●
●

●

●
●

●●
● ●● ●

●

●●

●

● ●●

●

●

●
●●●

●

●●●● ●●
●

● ● ●

●
●

●● ●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●● ●●● ● ●●

●

● ●

●

●

● ●● ●●

●

●●●●
●

● ●●
●

●

● ●●
●

●

●

●

●

●

●

● ●

●

●●●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●●
●

●

●
●

●
●

● ●●
●●

●

●

●● ●●●●
●●

●

●

●

●

●

● ● ●●● ●● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●●● ● ●

●

● ●

●
●

●

●

●

●

●● ● ●●●● ●●
●

● ●● ● ●

●

●● ●● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●● ● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●●

●
●

●

●

●
● ●● ●●● ●●●● ●● ● ● ●●● ●● ● ●● ● ●●●●● ●● ●● ●

● ●
●

●

● ●
●

●● ●

●

●
●●● ● ● ● ● ●●

●

●
●

●

●● ●

●

●● ●●

●
●

●

●

●
●●

●

●

●

●

●●● ● ● ● ●●●●● ●●

●
●

●

●

● ●
●

●●

●

● ●● ●● ●● ●● ●● ● ●● ●
●

●
● ●●

●
●

● ●

●

●● ●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●● ● ●●

●

●

●

● ●

●●

●

●●
● ●●●● ●●●● ●● ●● ●

●

● ● ●● ●●● ●● ●● ●
●

●

●

●

●

●● ●● ●● ●●

●
●

●●● ●
●

●● ●

●

●● ●
●●

●●

●

●

●
●● ●● ●

●
●●

●
●●

●

●

●

● ●● ●● ●● ●

●●

●

●

●

●
●● ●●● ●● ●● ●

●

●●

●

●● ● ●●● ●

●

●
●

● ●

●

●
●

●● ●●● ●●● ● ●● ●● ●

●

●

●

●

●

●●

●

●●

●

● ●●

●

●

●

●

● ●
●●● ●●

●

● ●●● ●● ● ●● ●
●● ●●

●
● ● ●●● ●● ●● ● ● ● ● ●● ●●●● ●● ● ●● ●● ●● ●

●
●● ● ● ●

●

● ●●●● ●● ●●●● ●
● ●

● ●●
●

●●

● ●
● ●● ● ●●●0

20

40

60

101 102 103 104 105

Job Size [s]

Sl
ow

do
w

n

(d) C O M P

● ●
●

●

●● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●● ●

●

●
●

●
●

●
●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●0

20

40

60

101 102 103 104 105

Job Size [s]

Sl
ow

do
w

n

(e) TA G S

●
●● ●●

●

●

●●

●●
●

●
● ● ●

●
●

●

●●
●

●● ●●● ●

●

●

●

●
● ●

●
● ●

●

● ●● ●
●

●

●

●

●

●

●

●

●

●● ● ●
●

● ●

●

●

● ●

●

●

●

● ●●

●

●

● ●
●●

●●● ●
●● ●

●
● ●

●

●

●

● ● ●
●

● ● ●●●
●

●

● ●●●

●

● ●●
●●

●

●

● ●●

● ●
● ●●

●
●
●

●
● ●● ●

●
●

●●● ● ●

● ●

●

●●
●●

●

●●
●

●

●● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●
●

● ●

●

●

●●

● ●
●

●
●●

●

●●

●

●

●

● ●

●

●● ●●
● ● ●

●
● ● ●

●

●

●●

●
●

● ● ●●●

●

●

●

●
● ●●

●
●

●
● ●

●

●

●

●

●

●●
●

● ●

●
●

●
●●

●

●

●● ●

●

●●● ● ●
●●●

●

●●
●

● ●● ● ● ●●
● ●

●

●● ●●● ●●● ●●● ●●

●

●

●
●●● ●●●● ●● ●●

●

●●● ● ●

●

● ● ●● ●

●

●
● ●

●

●● ●
●

●

● ●●●●●●
●

●

● ●

●●
●

● ●
●

●

●
●●

●
●

● ●● ● ● ● ●

●

●
●

●

●

●●
●

●
●

●

●
●

● ●
●
●

●

●
●

●

●
● ●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●●
● ●

●

●

●●

●
●

●
●

● ●

●
● ●

●

●

●

●

●
●

● ●

●

●
●

●
●

●
●

●
●

●

●
●●

●

●
●

●●

●
●

●
●

●

●
●

●

●●
● ●●

●

●

●

●●
●

●
●

● ●

●●

●

●

●

●

●
●

●

●

●
●●

●

● ● ●

●
●

●

●

●
●

●

●

●
●●

●
●

●

●

●

● ●

●

● ●●●● ●●

●

●
●

●

●
●

●
●● ● ●●● ●

●●

●

●●

●

●● ●●
●● ●

●●

●● ●

●

●●
●

●
●
●

● ●● ●
●

●

●

●

●
●

●●

●

●●

●

●
●

●
●

●
●

●

● ●●●

●

● ● ●

●

●

●

●
●

●
●

●

●●●

●

●● ● ●● ●●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●●
●

●● ● ●

●

●●
●●

●
●●

●●

●

●

●
●●

●
●● ●

●
●

●

●●●●
●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●● ●● ●●●● ● ●

●

● ●
●

●●

●

●
●● ●
●
●

●

●●●
●

●
● ● ●● ●

●

●● ●●● ●
●●

●
●

●

●

●

●●

●
●

●
●●●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

● ●
● ●● ●

●●●
● ●

●

●
● ●● ●

●●
● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●● ●● ●● ●

●

●● ●

●
●

●

● ●

●

●● ● ●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●●

●

● ●
●●● ●

● ●

●

●

●

●● ● ●

●

●

●

● ●●●

●

●● ●●

●

● ● ●●●

●

● ●
●

●

●

●●

●

● ●●
●● ●●

●

●

● ●●● ●●● ●● ●●

●

●

●

●

●

● ● ●

●

●

●

●●
●●●● ●

●

●

●●●● ●● ●●

●
●●

●●
● ●

●

●

●
●●

● ●
●

●
●

●
●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

● ●
● ● ● ●●●● ●

●●

●

●● ●
●

●

●

●

●● ●

●

●

●

●

●

●●

●
●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●0

20

40

60

101 102 103 104 105

Job Size [s]

Sl
ow

do
w

n

(f) S I TA

● ● ●● ●● ●

●
● ●

● ●
●

● ●● ●●
●

●
●

● ●●
●●

●● ●●● ● ●
●

●●
●●

●

●

●● ●

●

●
●

●●
●●●

●● ●
●

●●
●

● ●
●●

●

●

● ●●●● ● ● ● ●
●● ●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●
●

●

●
●

●

●●

●

●

●

● ●

● ●

●

● ●

●

●

●

●
●● ●

● ●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●●

●
●

●

●
●

●

●

●●
●

●
●

●
●

●

● ● ● ●

●

●
●

●
●

●●●
● ●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

● ●●

●● ● ●
●

●
●

●
●

●

● ●

●

●●

●● ●

●

● ●

●

●

●

● ●
●

●
●●

●

● ●
●

● ●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●● ●

●●●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●● ● ● ●●

●
● ●

●

●

●
●

●

●

●●
●

●●

●

●
●

●●

●

●
●

●

●

●●

●

●

● ●

●

●

●

● ●●

●

● ●
●

●

●

●
● ●

●

●

● ●
●

●
●

●

●
●●

●
●

●●

●

●

●●● ●

●

●
●

●
●

●

●

●

●

● ●

●

●●● ● ●
●

●● ●

●

● ●● ● ●

● ●
●

●●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
● ●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●●●
●

●●● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●
●

●

●
● ●●

●
●

●

●

●●

●●●●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●
● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●

●●
●●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●
●●

● ●
●

● ●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
● ●

●●●
●

●

● ●●
●

●

● ●

●
●

●
●

●● ●

●

●

●● ●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

● ●

●●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●●

●

●
●●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●
●

●

●

●
●

●

●● ● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●
● ●

●

●

●
●

●
●

●

●

●

●
●● ● ● ●

●

●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●
●●

●

● ● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
● ●●●●0

20

40

60

101 102 103 104 105

Job Size [s]

Sl
ow

do
w

n

(g) F B Q

● ●
●

● ●● ●●● ●● ●●● ●●

●

● ●● ●●

●
●

● ●

● ●
●

●●
●

●●

●
●

●

●
●●

●

●

●
● ●●●

●● ●● ●●● ● ●

●

●
●

● ●●● ●●● ● ●● ●

●

●● ●●

●

●
●

●●

●● ●●
● ●

●
● ●● ● ●●●●● ●

●

●

●●

●

●● ●●
●

●

●

● ●●●●
●

●
●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ● ●

●

● ●

● ●

●
●

●

●

●

●●

●

●

● ●
●

●

●

●

●●●
●●● ● ●

●

●

●●
●

●
●

●● ● ● ●●

●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

● ●

●

●

●

●

●

●● ● ●

●

●● ●

●

●

●

●

●

●

●
●

●●● ● ●

●

● ● ● ●● ●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●●
● ●

●

●
●●

●

● ●

●

●●

●

●● ●

● ●

●

● ●●
●

●

●

●

●●● ●●●●

●

●

●

●

●
●

●
●

● ●

●

●●●

●

●

● ● ●

●

● ●

●
●

● ●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●
●

●
●

●●●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

● ● ●●

●

●

●
●

●

●

●

●●
●●

● ●●
●

●
● ●

●
●●●

●

●
●●

●
●

●● ● ●
●●

● ●
●

●
● ●

● ●

●

●●

●

● ●

●

●● ●

●

●

●
●● ●●

●

●●● ●
●

●

●
●

● ●●●

●

●

●

●

●
●● ●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●●● ●● ● ●● ● ●●

●

● ● ●●

●

●

●
●

●
●

●

●●
●

●●

●

●●● ●●●

●

●●
●

●●

●

● ●
●

● ●
●

●

●

●

●

●

●● ●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●

●● ● ●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
● ●

●● ●

●

●

●

●

●●

●

●●●
●

●● ●

●

●● ●● ●

●

●

●

● ●●

●

●● ●● ●● ●●●

●

●

●

●

●

●

●

●

● ●● ● ●●● ●●●

●

●

●

●

●●● ● ●● ●●● ●

●

●

●

●

●

●

●

●

●

●

●● ●● ●●

●

●● ●
●

●

●●
●● ●

●

●

●

●

●

● ●●●

●

●

●●●

●

●

●

●

●

●

●

●

●● ●●● ●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●
● ●

● ●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●●

●

●●●

●

●

●● ● ●

●

●●

●

● ● ● ●●

●

●

● ●● ● ● ●

●

●●

●

● ●● ●

●

●

●

●

●●

●

●●

●

●
● ● ●●

●

●

●
●● ● ● ●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●● ●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●●● ● ●●● ●● ● ●● ●● ● ● ●●●●

●
●

●

●●

●

●

●

●

●● ● ●

●

●

●● ●●● ●●

●

●●●●

●

● ●●● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●0

20

40

60

101 102 103 104 105

Job Size [s]

Sl
ow

do
w

n

(h) C O M P

Fig. 10: Scatter plots of the job slowdown versus the job size for all policies under system loads of 0.7 (top) and 0.9 (bottom).
The horizontal lines show the median and the 95th percentile of the job slowdown distribution. The horizontal lines that shows
the 95th percentile of TA G S and C O M P at system load of 0.9 are higher than 60.

0

5

10

15

75 85 95
Percentile

Jo
b 

Sl
ow

do
wn

Va
ria

bi
lity

Policy
FIFO

TAGS

SITA

FBQ

COMP

Fig. 11: The job slowdown variability at different percentiles.

(partitions) is difficult to achieve without overloading the second
server (partition). In Figure 10 we show scatter plots of the
job slowdown versus the job size for all policies with the
optimal parameters. We observe that under system load of 0.9,
the performance of TA G S is very poor, with the median job
slowdown being twice as large as with F I F O. Further, with
both TA G S and C O M P the job slowdown at the 95th percentile
is higher than 60. Despite having a relatively lower median job
slowdown than TA G S and twice as low as F I F O, S I TA hurts
significantly the top 5% large jobs in our workload.

Although one would expect this issue to be removed with
F B Q, it turns out this is not necessarily true for MapReduce.
We observe that even for F B Q, balancing between the two
optimisation goals, i.e., the median job slowdown and the job
slowdown variability, is difficult, especially when the system
is under heavy-traffic. To explain this, we have to look at the
internal structure of MapReduce. As we have explained in our
model, when jobs are being preempted, they are allowed to
finish their running tasks no matter their given priority at that
time. This has a negative effect on both the system utilisation
and the slowdowns of large jobs, which may have reduce tasks
unnecessarily occupying slots, while their map tasks are waiting

●

●

●

●

●

●

●

●
●

0

5

10

15

20

101 102 103 104 105

Job Size [s]

M
ea

n
Jo

b 
Sl

ow
do

wn
Policy

● FIFO

TAGS

SITA

FBQ

COMP

Fig. 12: The mean job slowdown per job-size subrange of the
complete range of job sizes at a system load of 0.7 (horizontal
axis in log scale).

for higher-priority queues to become empty.

D. Fairness Analysis
Recent mathematical analysis has shown that scheduling

policies that are biased against long jobs by giving priority
to relatively small jobs, are not only optimal with respect to
mean response time or mean slowdown, but are also fair [4],
[14], [15]. In addition, as MapReduce was originally created
for jobs processing terabytes of data, scheduling disciplines
that allow short jobs to preempt large ones have never been
used in practice for MapReduce workloads for fear of hurting
the very large jobs. In this section we will present summary
evidence to what extent our policies help in the two dimensions
of job slowdown variability: reduced job slowdown variability
(the ratio of the 95th and 50th percentiles of the job slowdown
distribution) and even slowdowns across the complete range of
job sizes.

In Figure 11 we show the job slowdown variability at
different percentiles (as defined in Section III) under a system



load of 0.7. C O M P provides gains over F I F O only up to the
95th percentile. It is obvious that here F B Q is superior to
TA G S, S I TA, and that all these policies achieve a significant
improvement over F I F O. F B Q consistently improves the
slowdown variability at all percentiles by a factor of 2 over
F I F O. Although TA G S and S I TA are very close to F B Q, they
seem to shift the slowdown variability to the second partition,
where the largest jobs with thousands of tasks experience
slowdowns because of being confined to smaller partitions.
In fact, it is not the truly large jobs that suffer, but those jobs
that are not sufficiently small to be completed in partition 1
and therefore end up in partition 2.

We next compare how the mean job slowdown varies across
different job sizes with each policy. In Figure 12, we show the
mean slowdowns of jobs in logarithmically spaced subranges
of the complete range of job sizes (so, the first job-size range
covers sizes between 10 and 10

p
10, the second between 10

p
10

and 100, etc.) at a utilization of 0.7. The mean slowdowns
with F B Q, S I TA, and C O M P are considerably lower and less
variable than with TA G S and F I F O, with F B Q being somewhat
more stable. Thus, in particular F B Q manages to achieve a
very even job slowdown across the complete job size range,
which is exactly what we wanted.

E. More than two queues
When configured with K = 2 queues, both F B Q and S I TA

consistently improve the job slowdown at the 95th percentile
by a factor of 2 over F I F O for system loads between 0.7
and 0.9. However, under system loads of 0.9 or higher, a
relatively small fraction of large jobs (less than 5%) experience
considerably larger slowdowns than the median. Therefore, we
want to assess whether having more queues may reduce even
more the job slowdown variability. As for S I TA, an additional
queue comes with the burden of partitioning and assigning
appropriate capacities to those partitions, we compare only
F B Q and C O M P.

We will first explain the way we set the time limits of
the queues for F B Q. Recall from Figure 10g that the job
slowdowns offered by F B Q in optimal setting for K = 2 have
relatively different values across three ranges of job sizes. The
job slowdowns are somewhat stable for job sizes between 4,000
seconds and 10,000 seconds, but are very variable for job sizes
outside that range. Thus, we set the time limits of queue 1 and
queue 2 to 4,000 seconds and 10,000 seconds, respectively. As
for queue 3, we set the time limit to 36,000 seconds, which
is size of the job that suffers the highest job slowdown in the
optimal setting for K = 2. Even though there may be other
better values, setting the time limits is very critical for F B Q
with multiple queues at system loads of 0.9 or higher.

In Figure 13 we show scatter plots of the job slowdown
versus the job size for F B Q and C O M P when the number of
queues K is set to 4. Two points stand out. First, F B Q with
K = 4 offers considerable gains when the system is under
heavy load. The median slowdown improves by 30% and no
job of relatively small size (below 4,000 seconds) is over the
95th percentile of the job slowdown distribution. Secondly, in
contrast with F B Q, C O M P has lower median job slowdown
and more variable job slowdowns for large job sizes.

V I I . R E L AT E D W O R K
A large body of both theoretical and experimental work

exists on the evaluation of task assignment policies that
are biasing towards jobs with small sizes. However, despite

● ● ●● ● ●
●

●
●

●
●

●

●● ●● ●● ● ● ●● ●● ●
●

●● ● ●●●● ● ●● ● ● ●● ● ●
●
●●

● ●●

●

● ●●● ● ● ●●● ●● ●●● ● ●

●

●●● ● ●● ● ●● ●●
●●

●●

● ●
● ●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

● ●●
●

● ●
●

●●

●

● ●
●

●

●
●

● ●
●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●
●●

●

●

● ●
●

●

●

●

●

●● ●●
● ●

●
●

●●

● ● ●

●●

●● ●

●

●

●
● ●●●

●●
● ●

●
● ●

●●● ●
● ●

●● ●
●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●
●●

●
●●

●

●● ●

●

●

●

●
●●

●

●● ●

● ●

●

●

● ●

●

●

●

●

●
●●

●

●
●●

●
●

●
● ●

●

●

●

●

●

●

●

●

●● ●● ●● ●●

●

●

●
●

●●● ● ●
●●

●

●

●

●

● ●●
●●

●

●

● ●

● ●

●

●
●

●

●

●●

●

●

●
● ●

●

●
●

●● ●
●

● ●

●

●

● ●

●
●

●

●

●
● ●

●

●
● ●

●●
●

● ●

●
●

●
●

●
● ● ●

●

●

●

●●●●
●●

●

●●● ●●
●

●

●
●

● ●

●

●

● ●

●

● ● ●● ●● ●
●

●●
● ●

●●●● ●● ●●● ●● ●●

●

●

●

●

●●● ●● ●●● ● ● ●● ●●
●

● ● ●●
●

●

●● ● ●● ●● ● ●●●

●

● ●
● ● ●

●
●
●

● ●

●

●

●
●●● ●●

●
●

●
●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●
● ●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●
●

●

●●

●

●

● ●●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●●

●

●

●

●

●

● ●
●● ●

●

●

●
●● ● ●

●

●●●

●

●

●

●●
●

●●
●

●

●

●

●
● ●●

●

●

●

●●

●

●
●

●

●● ●

●
●

● ●

● ●

●

●

●

●

●

●
● ●

●● ●

● ●

●

●

●

●

●

●●
● ●

●
●

●●●

●

●

●

●

●●

●
●

●● ●
●

●

●●
●

●

●
●

●

● ●

● ●

●
●
●
●

●●

● ●

●●

●●● ●
●

●

●●

●

●

●●

●
●

●

●

●
●

●●●
●●

●

●

●

●
●

●
●

●

●

●
●● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

● ●

●

●

●

●

●

●●
●

● ●

●

●
●

●

●●

●
●

●

●● ●●●
●

● ●
●

●

●

●

●

●

● ●

●
●

●

●
●

●

● ●

●
●

●

●

● ●● ● ●● ●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●● ●

● ●

●

●● ●
● ●●● ●

● ●●● ●
●

●
● ●

●

●

●

● ●

●●

●

●● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●
●

●●

●
●

●●
●

● ●●
●

●
●

●
●
●

●●
●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●
● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●●

●
●●●●
●●●●0

20

40

60

101 102 103 104 105

Job Size [s]

Sl
ow

do
w

n

(a) F B Q

● ●
●

● ●● ●●● ●● ● ●●● ●● ●● ●● ●● ●●

●

● ●

●

●● ● ●●●
●

● ●●

●

●
●

●
● ●●●

●● ●● ●●● ● ● ●●● ●●●● ●

●

● ●●● ● ●●● ●● ●●● ●●● ● ●
●

● ●
●●

●

●● ●

●

● ● ● ●●

●

● ●●● ●●● ● ●●
●

●●

●

●
● ●●●●● ●●● ● ● ●

●

● ●●

●

● ●●● ●

●

● ● ●● ●

●

● ●● ●

●

●●

●

● ●● ●●

●

● ●● ●●● ●●●●● ●●

●

● ●● ● ●●● ● ● ●● ● ● ●●●● ●● ●● ●

●

●

●

●●

●

● ●●● ● ●●

●

● ●●
●
●

●●●●

●

●

●

● ●●
● ●

●● ●●● ●●

●

●

●

●●

●

●

●

●●

●

● ●●● ● ●

●

●

● ●●● ●●●

●

●●● ●●

●

●

●

● ● ● ●● ● ●● ●●●

●

●●

●

●● ●●●

●

●

●

●

●

●●●

●●

●●● ●● ● ●●●●

●

● ●

●

●●
●●

● ●
●●

●●
●

●

●● ● ●●● ● ●●●●

●

●● ●● ●● ● ●●● ●

●

●●

●

●● ●● ● ●●

●

●●●

●

●

● ●

●

●

●● ●●● ●
●

●
●

● ●

●

●

●

●

●●●●●

●

●

●

●●●

●

●● ● ● ●

●

●●●

●
●●

●

● ●

●

●

●

●
●

●

● ●●● ● ●●
●

● ●

●

●

●
● ●

●
●

●

● ● ●
●

● ●●
● ●

●● ●● ● ● ●● ●● ●
●

●● ●● ●● ● ● ●●●● ● ●●●● ●●● ● ●●
●

●●

●
●

●

● ●

●●

●

●
●● ●●● ●

●

● ● ●●●●● ● ●
●

●

●● ●

●

● ●● ●● ●● ●● ●●

●

● ● ●● ●●● ● ●●● ●

●

●● ●

●

●

●

●● ● ●●●● ●● ● ●●● ●●

●

● ● ●● ●● ●● ●

●

●●

●

●● ●● ● ●●
●

●

●

● ●●

●

●
●

●●● ●
●

●●●● ●●

●

●

● ●●●●● ● ●●● ● ●●

●
●

●●

●

● ●● ●●

●

● ●

●

● ●

●

●●●

●

●

●

●●● ●● ●● ●● ●
●

● ●● ●
● ●

●

●

●●
●

● ●

●

●● ●
●

●

●●●
●

● ●● ●●

●

●●●

●

● ●●● ● ●● ●●●●● ●

●

● ●

●

●● ●● ●●● ●● ● ●●● ● ●

●

●

●

● ●● ● ●●● ●● ●●● ●

●

●

●

● ●●● ●● ●● ●

●

●●●

●

● ●● ●● ● ●●● ●●● ● ●●●●●●●● ● ●●
●

●

●

●●●

●

● ●

●

●● ●●
●

●●

●

●

●

●

●

● ●●

●

● ●●●● ● ●● ●● ● ●

●

●

●

●●

●

●

●

● ● ●

●

●● ●● ●●

●

● ●●

●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●●

●

●●● ● ●●● ●

●

●● ●

●

●● ● ●● ●
●

● ●●
●

●● ● ●

●

● ● ●●

●

● ●●

●

● ● ●

●

●● ● ●● ●●● ●

●

●●●

●

●● ●● ●●● ●● ●●
●● ●

●
● ●● ●●●●

●

●● ● ●● ●●● ●●
●

●●

●

●● ● ● ●● ●●

●

● ●●

●

●●

●

●

●

● ●

●

●

● ●●

●

● ●●● ● ●●

●

● ●●

●

●

●

● ●●● ●● ●

●

●

● ●

●

●●●● ● ●

●

● ● ●● ●●● ● ●●● ●● ●●●● ● ●●●● ●●● ●●● ●●

●

●

● ● ●

●

●●● ●

●

●● ●

●

● ● ●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●0

20

40

60

101 102 103 104 105

Job Size [s]

Sl
ow

do
w

n

(b) C O M P

Fig. 13: Scatter plots of the job slowdown versus the job size
for F B Q and C O M P with K = 4 queues under a system load
of 0.9. The horizontal lines show the median and the 95th
percentile of the job slowdown distribution.

the superior performance of size-based policies, datacenter
schedulers have not yet incorporated them, for fear of unfairly
hurting very large jobs.

It is well-known that the Shortest-Remaining-Processing-
Time (S R P T) discipline is the best policy with respect to
mean sojourn time given any arrival sequence and job size
distributions [21], [23]. Another policy with comparable per-
formance to S R P T is the Shortest-Processing-Time-Product
(S P T P), which serves jobs according to the minimum product
of initial size and remaining service time. In an M/G/1 setting,
it has been shown that S P T P is optimal with respect to mean
slowdown [17].

In contrast to the general premise that S R P T may treat
unfairly large jobs which may starve given an adversarial
arrival sequence, recent work has shown that such concerns
are not realistic in the average case. More specifically, it can
be proved that for an M/G/1 model and workloads which are
heavy-tailed, all jobs experience a lower response time under
S R P T when compared to the more popular processor-sharing
(P S) discipline [4], [15]. S R P T achieves similar performance
even for general job size distributions under moderate loads,
and is not prohibitive even under higher loads. As a follow-
up to the previous result, it has been shown that in a more
practical setting of a web server, S R P T-based scheduling is
to be preferred over the de-facto F A I R scheduler which fairly
allocates fractions of resources to handle incoming requests [14].
However, S R P T is rarely used in current schedulers because
of the practical consideration of possibly unknown job sizes.
Luckily, the former drawback of S R P T discipline can be
alleviated in several ways. First, many computer workloads
exhibit strong correlations between the job input size and the
processing time (or size) of the job. This phenomenon has
been noticed in the case of web server requests, and is valid
for MapReduce workloads as well. Secondly, when job sizes
cannot be anticipated in any way, S R P T may be approximated
in an M/G/1 model by employing multi-level scheduling with
a large (infinite) number of feedback queues [20].

One representative policy for the problem of task assignment
for server farms is Size-Interval-Task-Interval-Assignment or
S I TA [12], which isolates all jobs with sizes within a predefined
size interval to a single server. S I TA was specifically designed
to reduce variability at each queue by dividing the job size
distribution so that each queue handles a less variable portion
of the original distribution. Although it may seem that the
optimal cutoff points in the distributions should be chosen in



such a way that the load is balanced across different servers
(of a server farm), counterintuitively, it has been proved that
S I TA is more effective at reducing the mean slowdown when
exactly the opposite is done [16]. Thus, S I TA unbalances the
load across the hosts and allows smaller tasks to run at lighter-
loaded servers. It has been shown that with S I TA, the more
heavy-tailed the workload is, the better is the load unbalanced
across hosts, thus greatly improving the mean slowdown [8].
Further, as the job size variability increases, S I TA is by far
superior to the Least-Work-Left (LW L) policy, which sends jobs
to the server with the least remaining work. Despite the general
belief of being the better policy, it seems S I TA may in fact be
inferior to the previous greedy policy, for particular job size
distributions [13]. Derived from the same fundamental idea of
load unbalancing, TA G S achieves comparable performance to
S I TA in the more challenging case of unknown job sizes [11].
Closest to our work, there exists a thorough simulation-based
analysis of S I TA with respect to fairness under supercomputing
workloads [22].

V I I I . C O N C L U S I O N S
Reducing job slowdown variability is an attractive yet

challenging target for MapReduce workloads with variable
job size distributions. Towards this end, we have presented four
multi-queue size-based scheduling policies for data-intensive
workloads derived from previous solutions to this problem for
sequential or rigid jobs in single-server and distributed-server
systems. The basic mechanisms employed by our policies are
partitioning of resources of the datacenter, and system feedback
by means of preemption in a work-conserving way. Hence,
jobs with different ranges are isolated in separate queues or
partitions, either by means of preemption from one queue to
another (the TA G S and F B Q policies), or through some form
of prediction (the S I TA and C O M P policies).

We analyse these policies with an extensive set of realistic
simulations of MapReduce workloads and show close to ideal
improvement for the vast majority of short jobs even in
unfavourable load conditions, while only a relatively small
fraction of large jobs suffer (less than 5%). We show that
TA G S operates well for capacities of partition 1 between
20-50%, and that S I TA offers considerable better slowdown
performance when the size of partition 1 is small. F B Q is
comparable to S I TA, but at both lower median slowdown and
slowdown variability, and unlike S I TA, it is very insensitive
to the queue time limit. Under heavy load, TA G S and C O M P
are by far the worst performing policies, while F B Q and S I TA
hurt significantly only the top 5% largest jobs in our workload.
However, F B Q with 4 queues achieves a 30% improvement in
median slowdown over the 2-queue setting.

We find that F B Q consistently improves the slowdown
variability over F I F O by a factor of 2 under system loads
between 0.7 and 0.9. Thus, F B Q may be the best policy in
practice, as it not only comes with the advantage of requiring
the setting of fewer parameters than both TA G S and S I TA, but
also offers very even job slowdowns across the complete range
of job sizes.

Finally, we deploy our policies on a multicluster system
and show that the relative error between the simulations and
the real-world experiments is less than 1% for both the median
job slowdown and the job slowdown at the 95th percentile.

R E F E R E N C E S
[1] “The Distributed ASCI Supercomputer 4,” http://www.cs.vu.nl/das4.

[2] “Hadoop Capacity Scheduler,” http://hadoop.apache.org/docs/r2.3.0/hadoop-
yarn/hadoop-yarn-site/CapacityScheduler.html.

[3] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman,
and M. Yu, “GRASS: Trimming Stragglers in Approximation Analytics,”
NSDI, 2014.

[4] N. Bansal and M. Harchol-Balter, “Analysis of SRPT Scheduling:
Investigating Unfairness,” SIGMETRICS, 2001.

[5] Y. Chen, S. Alspaugh, and R. Katz, “Interactive Analytical Processing in
Big Data Systems: A Cross-Industry Study of MapReduce Workloads,”
VLDB, 2012.

[6] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The Case for Evaluating
MapReduce Performance using Workload Suites,” MASCOTS, 2011.

[7] E. Coffman, R. Muntz, and H. Trotter, “Waiting Time Distributions for
Processor-Sharing Systems,” Journal of the ACM, vol. 17, no. 1, 1970.

[8] M. E. Crovella, M. Harchol-Balter, and C. D. Murta, “Task Assignment
in a Distributed System: Improving Performance by Unbalancing Load,”
SIGMETRICS PER, vol. 26, no. 1, 1998.

[9] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing on
Large Clusters,” Comm. of the ACM, vol. 51, no. 1, 2008.

[10] E. J. Friedman and S. G. Henderson, “Fairness and Efficiency in Web
Server Protocols,” SIGMETRICS PER, vol. 31, no. 1, 2003.

[11] M. Harchol-Balter, “Task Assignment with Unknown Duration,” Dis-
tributed Computing Systems, 2000.

[12] M. Harchol-Balter, M. E. Crovella, and C. D. Murta, “On Choosing a
Task Assignment Policy for a Distributed Server System,” JPDC, 1999.

[13] M. Harchol-Balter, A. Scheller-Wolf, and A. R. Young, “Surprising
Results on Task Assignment in Server Farms with High-Variability
Workloads,” ACM SIGMETRICS Performance Evaluation Review, vol. 37,
no. 1, 2009.

[14] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal, “Size-
Based Scheduling to Improve Web Performance,” TOCS, vol. 21, no. 2,
2003.

[15] M. Harchol-Balter, K. Sigman, and A. Wierman, “Asymptotic Conver-
gence of Scheduling Policies with Respect to Slowdown,” Performance
Evaluation, vol. 49, no. 1, 2002.

[16] M. Harchol-Balter and R. Vesilo, “To Balance or Unbalance Load
in Size-Interval Task Allocation,” Probability in the Engineering and
Informational Sciences, vol. 24, no. 02, 2010.

[17] E. Hyytiä, S. Aalto, and A. Penttinen, “Minimizing Slowdown in
Heterogeneous Size-Aware Dispatching Systems,” SIGMETRICS, vol. 40,
no. 1, 2012.

[18] P. R. Jelenkovic, X. Kang, and J. Tan, “Adaptive and Scalable
Comparison Scheduling,” SIGMETRICS, vol. 35, no. 1, 2007.

[19] A. Murthy, “Mumak: Map-Reduce Simulator,” MAPREDUCE-728,
Apache JIRA, 2009.

[20] L. Schrage, “The Queue M/G/1 with Feedback to Lower Priority Queues,”
Management Science, vol. 13, no. 7, 1967.

[21] L. E. Schrage and L. W. Miller, “The Queue M/G/1 with the Shortest
Remaining Processing Time Discipline,” Operations Research, vol. 14,
no. 4, 1966.

[22] B. Schroeder and M. Harchol-Balter, “Evaluation of Task Assignment
Policies for Supercomputing Servers: The Case for Load Unbalancing
and Fairness,” Cluster Computing, vol. 7, no. 2, 2004.

[23] D. R. Smith, “A New Proof of the Optimality of the Shortest Remaining
Processing Time Discipline,” Operations Research, vol. 26, no. 1, 1978.

[24] J. Tan, X. Meng, and L. Zhang, “Delay Tails in MapReduce Scheduling,”
SIGMETRICS, 2012.

[25] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic
Resource Inference and Allocation for MapReduce Environments,” ACM
Autonomic computing, 2011.

[26] ——, “Play It Again, SimMR!” IEEE CLUSTER, 2011.
[27] A. Wierman and M. Harchol-Balter, “Classifying Scheduling Policies

with Respect to Unfairness in an M/GI/1,” SIGMETRICS, 2003.
[28] R. W. Wolff, “Stochastic Modelling and the Theory of Queues,”

Englewood Cliffs, NJ, 1989.
[29] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica, “Delay Scheduling: A Simple Technique for Achieving Locality
and Fairness in Cluster Scheduling,” EuroSys, 2010.


